دورية أكاديمية

Bibliometric and visualized analysis of cancer nanomedicine from 2013 to 2023.

التفاصيل البيبلوغرافية
العنوان: Bibliometric and visualized analysis of cancer nanomedicine from 2013 to 2023.
المؤلفون: Tao J; Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. taoyhan@163.com., Yuan X; Soochow University Library, Soochow University, Suzhou, 215006, China., Zheng M; Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China., Jiang Y; Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China., Chen Y; Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China., Zhang F; Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China., Zhou N; Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China., Zhu J; Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. 15950005195@163.com., Deng Y; Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China. ybyi@suda.edu.cn.
المصدر: Drug delivery and translational research [Drug Deliv Transl Res] 2024 Jun; Vol. 14 (6), pp. 1708-1724. Date of Electronic Publication: 2023 Dec 31.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101540061 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2190-3948 (Electronic) Linking ISSN: 2190393X NLM ISO Abbreviation: Drug Deliv Transl Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York : Springer
مواضيع طبية MeSH: Nanomedicine* , Bibliometrics* , Neoplasms*/drug therapy , Neoplasms*/therapy , Antineoplastic Agents*/therapeutic use , Antineoplastic Agents*/administration & dosage, Humans ; Nanoparticles ; Drug Carriers/chemistry ; Drug Delivery Systems
مستخلص: Cancer nanomedicine has been an emerging field for drug development against malignant tumors during the past three decades. A bibliometric analysis was performed to characterize the current international trends and present visual representations of the evolution and emerging trends in the research and development of nanocarriers for cancer treatment. This study employed bibliometric analysis and visualization techniques to analyze the literature on antitumor nanocarriers published between 2013 and 2023. A total of 98,980 articles on antitumor nanocarriers were retrieved from the Web of Science Core Collection (WoSCC) database and analyzed using the Citespace software for specific characteristics such as publication year, countries/regions, organizations, keywords, and references. Network visualization was constructed by VOSviewer and Citespace. From 2013 to 2023, the annual global publications increased 7.39 times, from 1851 to 13,683. People's Republic of China (2588 publications) was the most productive country. Chinese Academy of Sciences (298 publications) was the most productive organization. The top 5 high-frequency keywords were "nanoparticles," "drug delivery," "nanomedicine," "cancer," and "nanocarriers." The keywords with the strongest citation bursts recently were "cancer immunotherapy," "microenvironment," "antitumor immunity," etc., which indicated the emerging frontiers of antitumor nanomedicine. The co-occurrence cluster analysis of the keywords formed 6 clusters, and most of the top 10 publications by citation counts focused on cluster #1 (nanocarriers) and cluster #2 (cancer immunotherapy). We further provided insightful discussions into the identified subtopics to help researchers gain more details of current trends and hotspots in this field. The present study processes a macro-level literature analysis of antitumor nanocarriers and provides new perspectives and research directions for future development in cancer nanomedicine.
(© 2023. Controlled Release Society.)
References: Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. (PMID: 3353833810.3322/caac.21660)
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51. (PMID: 26348965497850910.1038/nbt.3330)
Souri M, et al. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release. 2022;341:227–46. (PMID: 3482290910.1016/j.jconrel.2021.11.024)
Peng C, et al. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J Control Release. 2022;345:625–45. (PMID: 3532182710.1016/j.jconrel.2022.03.031)
Shou X, et al. Knowledge domain and emerging trends of glucagon-like peptide 1 receptor agonists in cardiovascular research: a bibliometric analysis. Curr Probl Cardiol. 2023;48(8):101194. (PMID: 3539533210.1016/j.cpcardiol.2022.101194)
Chen C. Science mapping: a systematic review of the literature. J Data Inf Sci. 2017;2:1–40.
Siegel RL, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. (PMID: 3502020410.3322/caac.21708)
Patra JK, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71. (PMID: 10.1186/s12951-018-0392-8)
Rosenblum D, et al. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410. (PMID: 29650952589755710.1038/s41467-018-03705-y)
Sindhwani S, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19(5):566–75. (PMID: 3193267210.1038/s41563-019-0566-2)
Shi J, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. (PMID: 2783439810.1038/nrc.2016.108)
Wilhelm S, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014. (PMID: 10.1038/natrevmats.2016.14)
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003. (PMID: 2415041710.1038/nmat3776)
Bertrand N, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. (PMID: 2427000710.1016/j.addr.2013.11.009)
Lahooti B, et al. Targeting endothelial permeability in the EPR effect. J Control Release. 2023;361:212–35. (PMID: 3751754310.1016/j.jconrel.2023.07.039)
Hamadani CM, et al. Development of ionic liquid-coated PLGA nanoparticles for applications in intravenous drug delivery. Nat Protoc. 2023;18(8):2509–57. (PMID: 3746865110.1038/s41596-023-00843-6)
Liang A, et al. Effects of individual amino acids on the blood circulation of biosynthetic protein nanocages: toward guidance on surface engineering. Adv Healthc Mater. 2023;12(26):e2300502. (PMID: 3706718310.1002/adhm.202300502)
Li J, et al. Research progress on multi-target regulation strategies of tumor microenvironment based on nano-drug delivery system. Acta Pharm Sin. 2023;58(03):536–49.
Wang M, et al. Tumor microenvironment-mediated NIR-I-to-NIR-II transformation of Au self-assembly for theranostics. Acta Biomater. 2023;168:606–16. (PMID: 3747915710.1016/j.actbio.2023.07.016)
Song S, et al. Multiple therapeutic mechanisms of pyrrolic N-rich g-C (3)N (4) nanosheets with enzyme-like function in the tumor microenvironment. J Colloid Interface Sci. 2023;650(Pt B):1125–37. (PMID: 3747347310.1016/j.jcis.2023.06.177)
Yang L, et al. Engineered Toll-like receptor nanoagonist binding to extracellular matrix elicits safe and robust antitumor immunity. ACS Nano. 2023;17(6):5340–53. (PMID: 3691367110.1021/acsnano.2c08429)
Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020;20(5):321–34. (PMID: 32005979753661810.1038/s41577-019-0269-6)
Li H, et al. A near-infrared-II fluorescent nanocatalyst for enhanced CAR T cell therapy against solid tumor by immune reprogramming. ACS Nano. 2023;17(12):11749–63. (PMID: 3731912010.1021/acsnano.3c02592)
Kar A, et al. A localized hydrogel-mediated chemotherapy causes immunogenic cell death via activation of ceramide-mediated unfolded protein response. Sci Adv. 2023;9(26):eadf2746. (PMID: 373902051031316910.1126/sciadv.adf2746)
Yin B, et al. Smart design of nanostructures for boosting tumor immunogenicity in cancer immunotherapy. Pharmaceutics. 2023;15(5):1427. (PMID: 372426691022185610.3390/pharmaceutics15051427)
Li T, et al. pH-activatable copper-biomineralized proenzyme for synergistic chemodynamic/chemo-immunotherapy against aggressive cancers. Adv Mater. 2022;35(14):e2210201. (PMID: 10.1002/adma.202210201)
Miron-Barroso S, Domenech EB, Trigueros S. Nanotechnology-based strategies to overcome current barriers in gene delivery. Int J Mol Sci. 2021;22(16):8537. (PMID: 34445243839519310.3390/ijms22168537)
Choi EH, et al. Genome editing in the treatment of ocular diseases. Exp Mol Med. 2023;55(8):1678–90. (PMID: 375248701047408710.1038/s12276-023-01057-2)
Xu X, et al. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev. 2021;176:113891. (PMID: 3432488710.1016/j.addr.2021.113891)
Chen Y, Ping Y. Development of CRISPR/Cas delivery systems for in vivo precision genome editing. Acc Chem Res. 2023;56(16):2185–96. (PMID: 3752589310.1021/acs.accounts.3c00279)
Kim J, et al. Self-assembled mRNA vaccines. Adv Drug Deliv Rev. 2021;170:83–112. (PMID: 33400957783730710.1016/j.addr.2020.12.014)
Li X, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657–74. (PMID: 3269930910.1038/s41571-020-0410-2)
Fu Y, et al. Oxygen-generating organic/inorganic self-assembled nanocolloids for tumor-activated dual-model imaging-guided photodynamic therapy. ACS Appl Mater Interfaces. 2023;15(30):36013–24. (PMID: 3747856310.1021/acsami.3c07008)
Liu B, et al. Highly efficient far-red/NIR-absorbing neutral Ir (III) complex micelles for potent photodynamic/photothermal therapy. Adv Mater. 2021;33(32):e2100795. (PMID: 3421928610.1002/adma.202100795)
Zhai Y, et al. Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J Control Release. 2022;350:761–76. (PMID: 3606396110.1016/j.jconrel.2022.08.054)
Fan D, et al. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023;8(1):293. (PMID: 375449721040459010.1038/s41392-023-01536-y)
Shan X, et al. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B. 2022;12(7):3028–48. (PMID: 35865096929371910.1016/j.apsb.2022.02.025)
Hou X, et al. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–94. (PMID: 34394960835393010.1038/s41578-021-00358-0)
Tracey SR, et al. Development of next generation nanomedicine-based approaches for the treatment of cancer: we’ve barely scratched the surface. Biochem Soc Trans. 2021;49(5):2253–69. (PMID: 34709394858942510.1042/BST20210343)
Mitchell MJ, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24. (PMID: 3327760810.1038/s41573-020-0090-8)
Liu Y, et al. Nano-bio interactions in cancer: from therapeutics delivery to early detection. Acc Chem Res. 2021;54(2):291–301. (PMID: 3318045410.1021/acs.accounts.0c00413)
Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation. Drug Deliv Transl Res. 2020;10(3):721–5. (PMID: 32166632722898010.1007/s13346-020-00740-5)
Gal D, et al. Hot topics and trends in cardiovascular research. Eur Heart J. 2019;40(28):2363–74. (PMID: 31162536664272510.1093/eurheartj/ehz282)
فهرسة مساهمة: Keywords: Bibliometrics; Cancer nanomedicine; Citespace; Nanocarrier; Visual analysis
المشرفين على المادة: 0 (Antineoplastic Agents)
0 (Drug Carriers)
تواريخ الأحداث: Date Created: 20231231 Date Completed: 20240426 Latest Revision: 20240426
رمز التحديث: 20240427
DOI: 10.1007/s13346-023-01485-7
PMID: 38161193
قاعدة البيانات: MEDLINE
الوصف
تدمد:2190-3948
DOI:10.1007/s13346-023-01485-7