دورية أكاديمية

COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers.

التفاصيل البيبلوغرافية
العنوان: COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers.
المؤلفون: Rodrigues P; Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia., Bangali H; Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia., Hammoud A; Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia. hammoud.a@mail.ru.; Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Mubarak Al-Abdullah, Kuwait. hammoud.a@mail.ru., Mustafa YF; Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq., Al-Hetty HRAK; Department of Biology, College of Education For Pure Sciences, University of Anbar, Ramadi, Anbar, Iraq. hussin.riyadh@uoanbar.edu.iq., Alkhafaji AT; Cardiology Department, College of Medicine, Al-Ayen University, Thi-Qar, Iraq., Deorari MM; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India., Al-Taee MM; Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq., Zabibah RS; College of Medical Technique, the Islamic University, Najaf, Iraq., Alsalamy A; College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq.
المصدر: Medical oncology (Northwood, London, England) [Med Oncol] 2024 Jan 02; Vol. 41 (1), pp. 41. Date of Electronic Publication: 2024 Jan 02.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 9435512 Publication Model: Electronic Cited Medium: Internet ISSN: 1559-131X (Electronic) Linking ISSN: 13570560 NLM ISO Abbreviation: Med Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : New York : Springer
Original Publication: Northwood, Middlesex, England : Science and Technology Letters, c1994-
مواضيع طبية MeSH: Cyclooxygenase 2 Inhibitors*/pharmacology , Cyclooxygenase 2 Inhibitors*/therapeutic use , Neoplasms*/drug therapy, Humans ; Cyclooxygenase 2 ; Combined Modality Therapy ; Carcinogenesis
مستخلص: Cyclooxygenase (COX) enzymes are pivotal in inflammation and cancer development. COX-2, in particular, has been implicated in tumor growth, angiogenesis, and immune evasion. Recently, COX-2 inhibitors have arisen as potential therapeutic agents in cancer treatment. In addition, combining COX inhibitors with other treatment modalities has demonstrated the potential to improve therapeutic efficacy. This review aims to investigate the effects of COX inhibition, both alone and in combination with other methods, on signaling pathways and carcinogenesis in various cancers. In this study, a literature search of all major academic databases was conducted (PubMed, Scholar google), including the leading research on the mechanisms of COX-2, COX-2 inhibitors, monotherapy with COX-2 inhibitors, and combining COX-2-inhibitors with chemotherapeutic agents in tumors. The study encompasses preclinical and clinical evidence, highlighting the positive findings and the potential implications for clinical practice. According to preclinical studies, multiple signaling pathways implicated in tumor cell proliferation, survival, invasion, and metastasis can be suppressed by inhibiting COX. In addition, combining COX inhibitors with chemotherapy drugs, targeted therapies, immunotherapies, and miRNA-based approaches has enhanced anti-tumor activity. These results suggest that combination therapy has the potential to overcome resistance mechanisms and improve treatment outcomes. However, caution must be exercised when selecting and administering combination regimens. Not all combinations of COX-2 inhibitors with other drugs result in synergistic effects; some may even have unfavorable interactions. Therefore, personalized approaches that consider the specific characteristics of the cancer and the medications involved are crucial for optimizing therapeutic strategies. In conclusion, as monotherapy or combined with other methods, COX inhibition bears promise in modulating signaling pathways and inhibiting carcinogenesis in various cancers. Additional studies and well-designed clinical trials are required to completely elucidate the efficacy of COX inhibition and combination therapy in enhancing cancer treatment outcomes. This narrative review study provides a detailed summary of COX-2 monotherapy and combination targeted therapy in cancer treatment.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F, Global Cancer Statistics 2020. GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 Countries. CA: Canc J Clin. 2021;71:209–49.
Fodale V, Pierobon M, Liotta L, Petricoin E. Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J (Sudbury Mass). 2011;17:89–95. (PMID: 10.1097/PPO.0b013e318212dd3d)
Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13:127–37. (PMID: 1190130410.1097/00001813-200202000-00003)
Wang D, Guo XZ, Li HY, Zhao JJ, Shao XD, Wu CY. Prognostic significance of cyclooxygenase-2 protein in Pancreatic cancer: a meta-analysis. Tumour Biol. 2014;35:10301–7. (PMID: 2503452510.1007/s13277-014-2260-y)
Li S, Jiang M, Wang L, Yu S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: recent advancement. Biomed Pharmacother. 2020;129:110389. (PMID: 3254064210.1016/j.biopha.2020.110389)
Mahboubi Rabbani SMI, Zarghi A. Selective COX-2 inhibitors as anti-cancer agents: a patent review (2014–2018). Exp Opinion Ther Pat. 2019;29:407–27. (PMID: 10.1080/13543776.2019.1623880)
El-Malah AA, Gineinah MM, Deb PK, Khayyat AN, Bansal M, Venugopala KN, Aljahdali AS. Selective COX-2 inhibitors: road from success to controversy and the quest for repurposing. Pharmaceuticals. 2022;15(7):827. (PMID: 35890126931830210.3390/ph15070827)
Dannenberg AJ, Zakim D. Chemoprevention of Colorectal cancer through inhibition of cyclooxygenase-2. Semin Oncol. 1999;26:499–504. (PMID: 10528897)
Eling TE, Thompson DC, Foureman GL, Curtis JF, Hughes MF. Prostaglandin H synthase and xenobiotic oxidation. Annu Rev Pharmacol Toxicol. 1990;30:1–45. (PMID: 211165410.1146/annurev.pa.30.040190.000245)
Wiese FW, Thompson PA, Kadlubar FF. Carcinogen substrate specificity of human COX-1 and COX-2. Carcinogenesis. 2001;22:5–10. (PMID: 1115973410.1093/carcin/22.1.5)
Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, Haudenschild C, Lane TF, Hla T. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem. 2001;276:18563–9. (PMID: 1127874710.1074/jbc.M010787200)
Muller-Decker K, Neufang G, Berger I, Neumann M, Marks F, Furstenberger G. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci USA. 2002;99:12483–8. (PMID: 1222128812947110.1073/pnas.192323799)
Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM. Suppression of intestinal polyposis in apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87:803–9. (PMID: 894550810.1016/S0092-8674(00)81988-1)
Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F, Narumiya S, Oshima M, Taketo MM. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in apc(Delta 716) knockout mice. Nat Med. 2001;7:1048–51. (PMID: 1153370910.1038/nm0901-1048)
Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon Cancer cells. Cancer Res. 1998;58:362–6. (PMID: 9443418)
Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon Cancer growth and gastrointestinal hypertrophy. Nat Med. 2002;8:289–93. (PMID: 1187550110.1038/nm0302-289)
Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, DuBois RN. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncology: Official J Am Soc Clin Oncol. 2005;23:254–66. (PMID: 10.1200/JCO.2005.09.112)
Buchanan FG, Wang D, Bargiacchi F, DuBois RN. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem. 2003;278:35451–7. (PMID: 1282418710.1074/jbc.M302474200)
Shao J, Lee SB, Guo H, Evers BM, Sheng H. Prostaglandin E2 stimulates the growth of colon Cancer cells via induction of amphiregulin. Cancer Res. 2003;63:5218–23. (PMID: 14500348)
Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases. Cells. 2020;9(5):1076. (PMID: 32357580729039210.3390/cells9051076)
Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon Cancer cells increases metastatic potential. Proc Natl Acad Sci USA. 1997;94:3336–40. (PMID: 90963942037010.1073/pnas.94.7.3336)
Attiga FA, Fernandez PM, Weeraratna AT, Manyak MJ, Patierno SR. Inhibitors of prostaglandin synthesis inhibit human prostate Tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res. 2000;60:4629–37. (PMID: 10969817)
Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 1995;83:493–501. (PMID: 852147910.1016/0092-8674(95)90127-2)
Kakiuchi Y, Tsuji S, Tsujii M, Murata H, Kawai N, Yasumaru M, Kimura A, Komori M, Irie T, Miyoshi E, Sasaki Y, Hayashi N, Kawano S, Hori M. Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens on colon cancer cells and enhanced liver metastasis. Cancer Res. 2002;62:1567–72. (PMID: 11888937)
Tian J, Wang V, Wang N, Khadang B, Boudreault J, Bakdounes K, Ali S, Lebrun JJ. Identification of MFGE8 and KLK5/7 as mediators of breast tumorigenesis and resistance to COX-2 inhibition. Breast Cancer Res. 2021;23(1):1–8. (PMID: 10.1186/s13058-021-01401-2)
Zhang T, Liu H, Li Y, Li C, Wan G, Chen B, Li C, Wang Y. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic Breast cancer through combining chemotherapy and COX-2 inhibition. Acta Biomater. 2019;99:412–25. (PMID: 3149429410.1016/j.actbio.2019.09.001)
Takahashi T, Kozaki K, Yatabe Y, Achiwa H, Hida T. Increased expression of COX-2 in the development of human lung cancers. J Environ Pathol Toxicol Oncol. 2002;21:177–81. (PMID: 1208640410.1615/JEnvironPatholToxicolOncol.v21.i2.110)
Jin K, Qian C, Lin J, Liu B. Cyclooxygenase-2-Prostaglandin E2 pathway: a key player in tumor-associated immune cells. Front Oncol. 2023;13:1099811. (PMID: 36776289991181810.3389/fonc.2023.1099811)
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in Colorectal cancer: pathogenic role and therapeutic target. Mol Cancer. 2022;21:144. (PMID: 35836256928113210.1186/s12943-022-01616-7)
Geindreau M, Bruchard M, Vegran F. Role of cytokines and chemokines in angiogenesis in a tumor context. Cancers. 2022;14(10):2446. (PMID: 913947210.3390/cancers14102446)
Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res: IJPR. 2011;10:655–83. (PMID: 242504023813081)
Zhang Z, Ghosh A, Connolly PJ, King P, Wilde T, Wang J, Dong Y, Li X, Liao D, Chen H, Tian G, Suarez J, Bonnette WG, Pande V, Diloreto KA, Shi Y, Patel S, Pietrak B, Szewczuk L, Sensenhauser C, Dallas S, Edwards JP, Bachman KE, Evans DC. Gut-restricted selective Cyclooxygenase-2 (COX-2) inhibitors for chemoprevention of colorectal cancer. J Med Chem. 2021;64:11570–96. (PMID: 3427993410.1021/acs.jmedchem.1c00890)
Zhang S, Guo N, Wan G, Zhang T, Li C, Wang Y, Wang Y, Liu Y. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J Nanobiotechnol. 2019;17:109. (PMID: 10.1186/s12951-019-0540-9)
Amit A, Yadav S, Singh RP, Kumar C. Development of RNA-Based medicine for colorectal cancer: current scenario. In: Colon cancer diagnosis and therapy. 3rd ed. Heidelberg: Springer; 2022. p. 339–60. (PMID: 10.1007/978-3-030-72702-4_16)
Jara-Gutiérrez A, Baladrón V. The role of prostaglandins in different types of cancer. Cells. 2021;10(6):1487. (PMID: 34199169823151210.3390/cells10061487)
Lee Y, Rodriguez C, Dionne RA. The role of COX-2 in acute pain and the use of selective COX-2 inhibitors for acute pain relief. Curr Pharm Des. 2005;11:1737–55. (PMID: 1589267210.2174/1381612053764896)
De Monte C, Carradori S, Gentili A, Mollica A, Trisciuoglio D, Supuran CT. Dual cyclooxygenase and carbonic anhydrase inhibition by non-steroidal anti-inflammatory drugs for the treatment of cancer. Curr Med Chem. 2015;22:2812–8. (PMID: 2618000310.2174/0929867322666150716113501)
Supuran CT, Casini A, Mastrolorenzo A, Scozzafava A. COX-2 selective inhibitors, carbonic anhydrase inhibition and anti-cancer properties of sulfonamides belonging to this class of pharmacological agents. Mini Rev Med Chem. 2004;4:625–32. (PMID: 10.2174/1389557043403792)
Dogné JM, Thiry A, Pratico D, Masereel B, Supuran CT. Dual carbonic anhydrase–cyclooxygenase-2 inhibitors. Curr Top Med Chem. 2007;7:885–91. (PMID: 1750413310.2174/156802607780636717)
Temperini C, Cecchi A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited–old leads for new applications? Org Biomol Chem. 2008;6(14):2499–506. (PMID: 10.1039/b800767e)
Noma N, Fujii G, Miyamoto S, Komiya M, Nakanishi R, Shimura M, Tanuma SI, Mutoh M. Impact of acetazolamide, a carbonic anhydrase inhibitor, on the development of intestinal polyps in min mice. Int J Mol Sci. 2017;18(4):851. (PMID: 28420165541243510.3390/ijms18040851)
Singh S, Lomelino CL, Mboge MY, Frost SC, McKenna R. Cancer drug development of carbonic anhydrase inhibitors beyond the active site. Molecules (Basel). 2018;23(5):1045. (PMID: 10.3390/molecules23051045)
Pannunzio A, Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: a review of oncology and medicinal chemistry literature. Pharmaceuticals (Basel). 2018;11(4):101. (PMID: 3031431010.3390/ph11040101)
Mattia C, Coluzzi F. COX-2 inhibitors: pharmacological data and adverse effects. Minerva Anestesiol. 2005;71:461–70. (PMID: 16012420)
Davies NM, Jamali F. COX-2 selective inhibitors cardiac toxicity: getting to the heart of the matter. J Pharm Pharm Sci. 2004;7:332–6. (PMID: 15576013)
Mathew ST, Devi SG, Prasanth VV, Vinod B. Efficacy and safety of COX-2 Inhibitors in the clinical management of arthritis: Mini review. ISRN Pharmacol. 2011;2011:480291. (PMID: 319725610.5402/2011/480291)
Syed M, Skonberg C, Hansen SH. Mitochondrial toxicity of selective COX-2 inhibitors via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria. Toxicol Vitro. 2016;32:26–40. (PMID: 10.1016/j.tiv.2015.12.003)
Bansal SS, Joshi A, Bansal AK. New dosage formulations for targeted delivery of cyclo-oxygenase-2 inhibitors: focus on use in the elderly. Drugs Aging. 2007;24:441–51. (PMID: 1757191010.2165/00002512-200724060-00001)
Moon H, White AC, Borowsky AD. New insights into the functions of Cox-2 in skin and esophageal malignancies. Exp Mol Med. 2020;52:538–47. (PMID: 32235869721025710.1038/s12276-020-0412-2)
Zhang P, He D, Song E, Jiang M, Song Y. Celecoxib enhances the sensitivity of non-small-cell lung cancer cells to radiation-induced apoptosis through downregulation of the Akt/mTOR signaling pathway and COX-2 expression. PLoS ONE. 2019;14:e0223760. (PMID: 31613929679385910.1371/journal.pone.0223760)
Fournier DB, Gordon GB. COX-2 and colon cancer: potential targets for chemoprevention. J Cell Biochem Suppl. 2000;34:97–102. (PMID: 10.1002/(SICI)1097-4644(2000)77:34+<97::AID-JCB16>3.0.CO;2-Z)
Arun B, Goss P. The role of COX-2 inhibition in Breast cancer treatment and prevention. Semin Oncol. 2004;31:22–9. (PMID: 1517962110.1053/j.seminoncol.2004.03.042)
Klenke FM, Abdollahi A, Bischof M, Gebhard M-M, Ewerbeck V, Huber PE, Sckell A. Celecoxib enhances radiation response of secondary bone tumors of a human non-small cell Lung cancer via antiangiogenesis in vivo. Strahlenther Onkol. 2011;187:45–51. (PMID: 2123453110.1007/s00066-010-2116-3)
Garg R, Blando JM, Perez CJ, Lal P, Feldman MD, Smyth EM, Ricciotti E, Grosser T, Benavides F, Kazanietz MG. COX-2 mediates pro-tumorigenic effects of PKCε in Prostate cancer. Oncogene. 2018;37:4735–49. (PMID: 29765153619586710.1038/s41388-018-0318-9)
Ghosh N, Chaki R, Mandal V, Mandal SC. COX-2 as a target for cancer chemotherapy. Pharmacol Rep. 2010;62:233–44. (PMID: 2050827810.1016/S1734-1140(10)70262-0)
El-Malah AA, Gineinah MM, Deb PK, Khayyat AN, Bansal M, Venugopala KN, Aljahdali AS. Selective COX-2 Inhibitors: road from success to controversy and the quest for repurposing. Pharmaceuticals (Basel). 2022;15(7):827. (PMID: 3589012610.3390/ph15070827)
Pu D, Yin L, Huang L, Qin C, Zhou Y, Wu Q, Li Y, Zhou Q, Li L. Cyclooxygenase-2 inhibitor: a potential combination strategy with immunotherapy in cancer. Front Oncol. 2021;11:637504. (PMID: 33718229795286010.3389/fonc.2021.637504)
Wen B, Wei YT, Mu LL, Wen GR, Zhao K. The molecular mechanisms of celecoxib in tumor development. Medicine. 2020;99:e22544. (PMID: 753567010.1097/MD.0000000000022544)
Curry JM, Besmer DM, Erick TK, Steuerwald N, Das Roy L, Grover P, Rao S, Nath S, Ferrier JW, Reid RW, Mukherjee P. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against Breast cancer in MUC1 transgenic mice. PLoS ONE. 2019;14:e0224309. (PMID: 683426710.1371/journal.pone.0224309)
Trang NTK, Yoo H. Anti-tumor effects of Valdecoxib on hypopharyngeal squamous carcinoma cells. Korean J Physiol Pharmacol: Offl J Korean Physiol Soc Korean Soc Pharmacol. 2022;26:439–46. (PMID: 10.4196/kjpp.2022.26.6.439)
Md S, Alhakamy NA, Alharbi WS, Ahmad J, Shaik RA, Ibrahim IM, Ali J. Development and evaluation of repurposed etoricoxib loaded nanoemulsion for improving anti-cancer activities against lung cancer cells. Int J Mol Sci. 2021;22(24):13284. (PMID: 34948081870569910.3390/ijms222413284)
Das M, Law S. Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. Int J Biochem Cell Biol. 2018;103:115–24. (PMID: 3015348010.1016/j.biocel.2018.08.011)
Rehman FU, Al-Waeel M, Naz SS, Shah KU. Anti-cancer therapeutics: a brief account on wide refinements. Am J cancer Res. 2020;10:3599–621. (PMID: 332942577716164)
Scott WW, Johnson DE, Schmidt JE, Gibbons RP, Prout GR, Joiner JR, Saroff J, Murphy GP. Chemotherapy of advanced prostatic carcinoma with cyclophosphamide or 5-fluorouracil: results of first national randomized study. J Urol. 1975;114:909–11. (PMID: 110490010.1016/S0022-5347(17)67172-6)
Perroud HA, Alasino CM, Rico MJ, Mainetti LE, Queralt F, Pezzotto SM, Rozados VR. Graciela Scharovsky, metastatic Breast cancer patients treated with low-dose metronomic chemotherapy with cyclophosphamide and celecoxib: clinical outcomes and biomarkers of response. Cancer Chemother Pharmacol. 2016;77:365–74. (PMID: 2672170110.1007/s00280-015-2947-9)
Stockhammer F, Misch M, Koch A, Czabanka M, Plotkin M, Blechschmidt C, Tuettenberg J, Vajkoczy P. Continuous low-dose temozolomide and Celecoxib in recurrent glioblastoma. J Neurooncol. 2010;100:407–15. (PMID: 2044601610.1007/s11060-010-0192-y)
Lin XM, Li S, Zhou C, Li RZ, Wang H, Luo W, Huang YS, Chen LK, Cai JL, Wang TX, Zhang QH, Cao H, Wu XP. Cisplatin induces chemoresistance through the PTGS2-mediated anti-apoptosis in gastric cancer. Int J Biochem Cell Biol. 2019;116:105610. (PMID: 3151866310.1016/j.biocel.2019.105610)
Yang CX, Xing L, Chang X, Zhou TJ, Bi YY, Yu ZQ, Zhang ZQ, Jiang HL. Synergistic Platinum(II) prodrug nanoparticles for enhanced breast cancer therapy. Mol Pharm. 2020;17:1300–9. (PMID: 3205872710.1021/acs.molpharmaceut.9b01318)
Sung MW, Lee DY, Park SW, Oh SM, Choi JJ, Shin ES, Kwon SK, Ahn SH, Kim YH. Celecoxib enhances the inhibitory effect of 5-FU on human squamous cell carcinoma proliferation by ROS production. Laryngoscope. 2017;127:E117–e123. (PMID: 2766613910.1002/lary.26309)
Guo Q, Li Q, Wang J, Liu M, Wang Y, Chen Z, Ye Y, Guan Q, Zhou Y. A comprehensive evaluation of clinical efficacy and safety of Celecoxib in combination with chemotherapy in metastatic or postoperative recurrent gastric cancer patients: a preliminary, three-center, clinical trial study. Medicine. 2019;98:e16234. (PMID: 31277138663516110.1097/MD.0000000000016234)
Araujo-Mino EP, Patt YZ, Murray-Krezan C, Hanson JA, Bansal P, Liem BJ, Rajput A, Fekrazad MH, Heywood G, Lee FC. Phase II trial using a combination of oxaliplatin, capecitabine, and celecoxib with concurrent radiation for newly diagnosed resectable rectal cancer. Oncologist. 2018;23:2-e5. (PMID: 2915836510.1634/theoncologist.2017-0474)
Khasraw M, Bell R, Dang C. Epirubicin: is it like doxorubicin in Breast cancer? A clinical review. Breast. 2012;21:142–9. (PMID: 2226084610.1016/j.breast.2011.12.012)
Cox J, Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepatic Oncol. 2016;3:57–9. (PMID: 10.2217/hep.15.41)
Shi L, Xu L, Wu C, Xue B, Jin X, Yang J, Zhu X. Celecoxib-induced self-assembly of smart albumin-doxorubicin conjugate for enhanced cancer therapy. ACS Appl Mater Interfaces. 2018;10(10):8555–65. (PMID: 2948174110.1021/acsami.8b00875)
Singh S. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int J Nanomed. 2018;13:11–3. (PMID: 10.2147/IJN.S124701)
Abdallah FM, Helmy MW, Katary MA, Ghoneim AI. Synergistic antiproliferative effects of Curcumin and Celecoxib in hepatocellular carcinoma HepG2 cells. Naunyn-Schmiedeberg’s Arch Pharmacol. 2018;391:1399–410. (PMID: 10.1007/s00210-018-1557-6)
Lev-Ari S, Zinger H, Kazanov D, Yona D, Ben-Yosef R, Starr A, Figer A, Arber N. Curcumin synergistically potentiates the growth inhibitory and pro-apoptotic effects of celecoxib in pancreatic adenocarcinoma cells. Biomed Pharmacother. 2005;59:276-S280. (PMID: 10.1016/S0753-3322(05)80045-9)
Lev-Ari S, Strier L, Kazanov D, Madar-Shapiro L, Dvory-Sobol H, Pinchuk I, Marian B, Lichtenberg D, Arber N. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res. 2005;11:6738–44. (PMID: 1616645510.1158/1078-0432.CCR-05-0171)
Gowda R, Kardos G, Sharma A, Singh S, Robertson GP. Nanoparticle-based celecoxib and plumbagin for the synergistic treatment of melanoma. Mol Cancer Ther. 2017;16:440–52. (PMID: 2800332510.1158/1535-7163.MCT-16-0285)
Yoysungnoen B, Bhattarakosol O, Changtam C, Patumraj S. Combinational treatment effect of tetrahydrocurcumin and celecoxib on cervical cancer cell-induced tumor growth and tumor angiogenesis in nude mice. J Med Association Thailand = Chotmaihet Thangphaet. 2016;99(4):23–31.
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH. Akhavan-Sigari, progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22:169. (PMID: 378142701056143810.1186/s12943-023-01865-0)
Kim W, Son B, Lee S, Do H, Youn B. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev. 2018;37:213–25. (PMID: 2997157210.1007/s10555-018-9742-0)
Nakata E, Mason KA, Hunter N, Husain A, Raju U, Liao Z, Ang KK, Milas L. Potentiation of Tumor response to radiation or chemoradiation by selective cyclooxygenase-2 enzyme inhibitors. Int J Radiation Oncology* Biology* Phys. 2004;58:369–75. (PMID: 10.1016/j.ijrobp.2003.09.061)
Amano H, Ito Y, Suzuki T, Kato S, Matsui Y, Ogawa F, Murata T, Sugimoto Y, Senior R, Kitasato H. Roles of a prostaglandin E-type receptor, EP3, in upregulation of matrix metalloproteinase‐9 and vascular endothelial growth factor during enhancement of tumor Metastasis. Cancer Sci. 2009;100:2318–24. (PMID: 1979961010.1111/j.1349-7006.2009.01322.x)
Salehifar E, Hosseinimehr SJ. The use of cyclooxygenase-2 inhibitors for improvement of efficacy of radiotherapy in cancers. Drug Discovery Today. 2016;21:654–62. (PMID: 2695591110.1016/j.drudis.2016.02.019)
Sandler AB, Dubinett SM. COX-2 inhibition and lung cancer. In: Seminars in oncology. Amsterdam: Elsevier; 2004. p. 45–52.
Halamka M, Cvek J, Kubes J, Zavadova E, Kominek P, Horacek J, Dusek L, Feltl D. Plasma levels of vascular endothelial growth factor during and after radiotherapy in combination with Celecoxib in patients with advanced Head and Neck cancer. Oral Oncol. 2011;47:763–7. (PMID: 2169699910.1016/j.oraloncology.2011.05.009)
Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A. Moshtaghian, c-phycocyanin: a natural product with radiosensitizing property for enhancement of colon Cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep. 2019;9:19161. (PMID: 31844085691577910.1038/s41598-019-55605-w)
King L, Christie D, Arora D, Anoopkumar-Dukie S. Cyclooxygenase-2 inhibitors delay relapse and reduce prostate specific Antigen (PSA) velocity in patients treated with radiotherapy for nonmetastatic Prostate cancer: a pilot study. Prostate Int. 2020;8:34–40. (PMID: 3225797610.1016/j.prnil.2019.10.004)
Walker C. Are All Oral COX-2 Selective Inhibitors the Same? A Consideration of Celecoxib, Etoricoxib, and Diclofenac. International journal of rheumatology. 2018;2018:1302835. https://doi.org/10.1155/2018/1302835 . (PMID: 10.1155/2018/1302835306313666304524)
Liu H, Ruan S, Larsen ME, Tan C, Liu B, Lyu H. Trastuzumab-resistant Breast cancer cells-derived Tumor xenograft models exhibit distinct sensitivity to lapatinib treatment in vivo. Biol Procedures Online. 2023;25:19. (PMID: 10.1186/s12575-023-00212-3)
Reckamp KL, Koczywas M, Cristea MC, Dowell JE, Wang HJ, Gardner BK, Milne GL, Figlin RA, Fishbein MC, Elashoff RM, Dubinett SM. Randomized phase 2 trial of erlotinib in combination with high-dose celecoxib or placebo in patients with advanced non-small cell Lung cancer. Cancer. 2015;121:3298–306. (PMID: 2603383010.1002/cncr.29480)
Jin YH, Li WH, Bai Y, Ni L. Efficacy of erlotinib and celecoxib for patients with advanced non-small cell Lung cancer: a retrospective study. Medicine. 2019;98:e14785. (PMID: 30855490641762710.1097/MD.0000000000014785)
Sun J, Liu NB, Zhuang HQ, Zhao LJ, Yuan ZY, Wang P. Celecoxib-erlotinib combination treatment enhances radiosensitivity in A549 human lung cancer cell. Cancer biomarkers. 2017;19(1):45–50. (PMID: 2828279910.3233/CBM-160323)
Li N, Li H, Su F, Li J, Ma X, Gong P. Relationship between epidermal growth factor receptor (EGFR) mutation and serum cyclooxygenase-2 level, and the synergistic effect of Celecoxib and Gefitinib on EGFR expression in non-small cell Lung cancer cells. Int J Clin Exp Pathol. 2015;8:9010–20. (PMID: 264646434583875)
Liu J, Wu J, Zhou L, Pan C, Zhou Y, Du W, Chen JM, Zhu X, Shen J, Chen S, Liu RY, Huang W. ZD6474, a new treatment strategy for human osteosarcoma, and its potential synergistic effect with Celecoxib. Oncotarget. 2015;6(25):21341–52. (PMID: 26050198467326910.18632/oncotarget.4179)
Kaya TT, Altun A, Turgut NH, Ataseven H, Koyluoglu G. Effects of a multikinase inhibitor Motesanib (AMG 706) alone and combined with the selective DuP-697 COX-2 inhibitor on Colorectal Cancer cells. Asian Pac J cancer Prevention: APJCP. 2016;17:1103–10. (PMID: 10.7314/APJCP.2016.17.3.1103)
Atari-Hajipirloo S, Nikanfar S, Heydari A, Noori F, Kheradmand F. The effect of Celecoxib and its combination with Imatinib on human HT-29 Colorectal cancer cells: involvement of COX-2, Caspase-3, VEGF and NF-κB genes expression. Cellular Mol Biol. 2016;62:68–74.
Zhao Q, Guo J, Wang G, Chu Y, Hu X. Suppression of immune regulatory cells with combined therapy of Celecoxib and sunitinib in renal cell carcinoma. Oncotarget. 2017;8:1668–77. (PMID: 2792648910.18632/oncotarget.13774)
Zhong J, Xiu P, Dong X, Wang F, Wei H, Wang X, Xu Z, Liu F, Li T, Wang Y, Li J. Meloxicam combined with sorafenib synergistically inhibits Tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis. Oncol Rep. 2015;34:2142–50. (PMID: 10.3892/or.2015.4181)
Webb T, Carter J, Roberts JL, Poklepovic A, McGuire WP, Booth L, Dent P. Celecoxib enhances [sorafenib + sildenafil] lethality in cancer cells and reverts platinum chemotherapy resistance. Cancer Biol Ther. 2015;16:1660–70. (PMID: 26417912484613710.1080/15384047.2015.1099769)
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023;26:313–47. (PMID: 370604951010516310.1007/s10456-023-09876-7)
Sui W, Zhang Y, Wang Z, Wang Z, Jia Q, Wu L, Zhang W. Anti-tumor effect of a selective COX-2 inhibitor, Celecoxib, may be attributed to angiogenesis inhibition through modulating the PTEN/PI3K/Akt/HIF-1 pathway in an H22 murine hepatocarcinoma model. Oncol Rep. 2014;31:2252–60. (PMID: 2464742510.3892/or.2014.3093)
Hwang J-T, Ha J, Park OJ. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun. 2005;332:433–40. (PMID: 1589671110.1016/j.bbrc.2005.04.143)
Sminia P, Kuipers G, Geldof A, Lafleur V, Slotman B. COX-2 inhibitors act as radiosensitizer in tumor treatment. Biomed Pharmacother. 2005;59:272-S275. (PMID: 10.1016/S0753-3322(05)80044-7)
Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anti-cancer Drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102:14–25. (PMID: 20007921280228610.1093/jnci/djp440)
Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E. Drug repurposing in oncology: a systematic review of randomized controlled clinical trials. Cancers. 2023;15(11):2972. (PMID: 372969341025188210.3390/cancers15112972)
Jaaks P, Coker EA, Vis DJ, Edwards O, Carpenter EF, Leto SM, Dwane L, Sassi F, Lightfoot H, Barthorpe S, van der Meer D, Yang W, Beck A, Mironenko T, Hall C, Hall J, Mali I, Richardson L, Tolley C, Morris J, Thomas F, Lleshi E, Aben N, Benes CH, Bertotti A, Trusolino L, Wessels L, Garnett MJ. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature. 2022;603:166–73. (PMID: 35197630889101210.1038/s41586-022-04437-2)
Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8:45–56. (PMID: 28289518532971410.4331/wjbc.v8.i1.45)
Mishan MA, Tabari MAK, Zargari M, Bagheri A. MicroRNAs in the anti-cancer effects of Celecoxib: a systematic review. Eur J Pharmacol. 2020;882:173325. (PMID: 3261518110.1016/j.ejphar.2020.173325)
Fanale D, Castiglia M, Bazan V, Russo A. Involvement of non-coding RNAs in chemo-and radioresistance of colorectal cancer. Non-coding RNAs Colorectal Cancer. 2016;937:207–28. (PMID: 10.1007/978-3-319-42059-2_11)
Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K. The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol. 2020;13:1–14. (PMID: 10.1186/s13045-020-00848-8)
Rezaei R, Baghaei K, Hashemi SM, Zali MR, Ghanbarian H, Amani D. Tumor-derived exosomes enriched by miRNA-124 promote anti-tumor immune response in CT-26 tumor-bearing mice. Front Med. 2021;8:619939. (PMID: 10.3389/fmed.2021.619939)
Gong Z, Huang W, Wang B, Liang N, Long S, Li W, Zhou Q. Interplay between cyclooxygenase–2 and microRNAs in cancer. Mol Med Rep. 2021;23:1–10. (PMID: 10.3892/mmr.2020.11681)
Pucci P. Combination therapy and noncoding RNAs: A new era of cancer personalized medicine. Epigenomics. 2022;14(3):117–20. (PMID: 10.2217/epi-2021-0405)
Uramova S, Kubatka P, Dankova Z, Kapinova A, Zolakova B, Samec M, Zubor P, Zulli A, Valentova V, Kwon TK. Plant natural modulators in Breast cancer prevention: status quo and future perspectives reinforced by predictive, preventive, and personalized medical approach. EPMA J. 2018;9:403–19. (PMID: 30538792626191010.1007/s13167-018-0154-6)
Sun P, Quan J-C, Wang S, Zhuang M, Liu Z, Guan X, Wang G-Y, Wang H-Y, Wang X-S. lncRNA-PACER up-regulates COX-2 and PGE2 through the NF-κB pathway to promote the proliferation and invasion of Colorectal-cancer cells. Gastroenterol Rep. 2021;9:257–68. (PMID: 10.1093/gastro/goaa060)
Harati R, Mabondzo A, Tlili A, Khoder G, Mahfood M, Hamoudi R. Combinatorial targeting of microRNA-26b and microRNA-101 exerts a synergistic inhibition on cyclooxygenase-2 in brain metastatic triple-negative breast cancer cells. Breast Cancer Res Treat. 2021;187:695–713. (PMID: 3404162110.1007/s10549-021-06255-y)
Desind SZ, Iacona JR, Christina YY, Mitrofanova A, Lutz CS. PACER lncRNA regulates COX-2 expression in Lung cancer cells. Oncotarget. 2022;13:291. (PMID: 35136486881578410.18632/oncotarget.28190)
Tudor DV, Bâldea I, Lupu M, Kacso T, Kutasi E, Hopârtean A, Stretea R, Gabriela Filip A. COX-2 as a potential biomarker and therapeutic target in Melanoma. Cancer Biol Med. 2020;17:20–31. (PMID: 32296574714285110.20892/j.issn.2095-3941.2019.0339)
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination therapy as a promising way to fight oral cancer. Pharmaceutics. 2023;15(6):1653. (PMID: 373761011030149510.3390/pharmaceutics15061653)
Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–43. (PMID: 2841023710.18632/oncotarget.16723)
Ahronian LG, Corcoran RB. Strategies for monitoring and combating resistance to combination kinase inhibitors for cancer therapy. Genome Med. 2017;9:1–12. (PMID: 10.1186/s13073-017-0431-3)
Wang RC, Wang Z. Precision medicine: Disease subtyping and tailored treatment. Cancers. 2023;15(15):3837. (PMID: 375686531041765110.3390/cancers15153837)
Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109:952–63. (PMID: 29935653636645110.1016/j.fertnstert.2018.05.006)
Perroud HA, Alasino CM, Rico MJ, Mainetti LE, Queralt F, Pezzotto SM, Rozados VR, Scharovsky OG. Metastatic Breast cancer patients treated with low-dose metronomic chemotherapy with cyclophosphamide and celecoxib: clinical outcomes and biomarkers of response. Cancer Chemother Pharmacol. 2016;77:365–74. (PMID: 2672170110.1007/s00280-015-2947-9)
Chu TH, Chan HH, Hu TH, Wang EM, Ma YL, Huang SC, Wu JC, Chang YC, Weng WT, Wen ZH, Wu DC, Chen YA, Tai MH. Celecoxib enhances the therapeutic efficacy of epirubicin for Novikoff hepatoma in rats. Cancer Med. 2018;7:2567–80. (PMID: 29683262601082710.1002/cam4.1487)
Cao Y, Qu J, Li C, Yang D, Hou K, Zheng H, Liu Y, Qu X. Celecoxib sensitizes gastric cancer to rapamycin via inhibition of the Cbl-b-regulated PI3K/Akt pathway, tumour biology. J Int Soc Oncodeve Biol Med. 2015;36:5607–15. (PMID: 10.1007/s13277-015-3232-6)
Abdallah FM, Helmy MW, Katary MA, Ghoneim AI. Synergistic antiproliferative effects of curcumin and celecoxib in hepatocellular carcinoma HepG2 cells. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:1399–410. (PMID: 3015569310.1007/s00210-018-1557-6)
Chen J, Liu S, Li Q, Peng J. [Combined application of Cisplatin and Celecoxib inhibits the proliferation and promotes apoptosis of nasopharyngeal carcinoma cells resistant to cisplatin], Xi bao Yu Fen Zi Mian Yi Xue Za Zhi = Chinese. J Cell Mol Immunol. 2015;31:203–6.
Li N, Li H, Su F, Li J, Ma X, Gong P. Relationship between epidermal growth factor receptor (EGFR) mutation and serum cyclooxygenase-2 level, and the synergistic effect of Celecoxib and Gefitinib on EGFR expression in non-small cell Lung cancer cells. Int J Clin Exp Pathol. 2015;8:9010. (PMID: 264646434583875)
Lin JZ, Hameed I, Xu Z, Yu Y, Ren ZY, Zhu JG. Efficacy of gefitinib–celecoxib combination therapy in docetaxel–resistant prostate cancer. Oncol Rep. 2018;40:2242–50. (PMID: 30066906)
Riva B, De Dominici M, Gnemmi I, Mariani SA, Minassi A, Minieri V, Salomoni P, Canonico PL, Genazzani AA, Calabretta B, Condorelli F. Celecoxib inhibits proliferation and survival of chronic myelogeous leukemia (CML) cells via AMPK-dependent regulation of β-catenin and mTORC1/2. Oncotarget. 2016;7:81555–70. (PMID: 27835591534841210.18632/oncotarget.13146)
Zhao Q, Guo J, Wang G, Chu Y, Hu X. Suppression of immune regulatory cells with combined therapy of Celecoxib and sunitinib in renal cell carcinoma. Oncotarget. 2017;8:1668. (PMID: 2792648910.18632/oncotarget.13774)
Zhong J, Xiu P, Dong X, Wang F, Wei H, Wang X, Xu Z, Liu F, Li T, Wang Y. Meloxicam combined with sorafenib synergistically inhibits Tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis. Oncol Rep. 2015;34:2142–50. (PMID: 2625205710.3892/or.2015.4181)
Sung MW, Lee DY, Park SW, Oh SM, Choi JJ, Shin ES, Kwon SK, Ahn SH, Kim YH. Celecoxib enhances the inhibitory effect of 5-FU on human squamous cell carcinoma proliferation by ROS production. Laryngoscope. 2017;127:E117–23. (PMID: 2766613910.1002/lary.26309)
Araujo-Mino EP, Patt YZ, Murray‐Krezan C, Hanson JA, Bansal P, Liem BJ, Rajput A, Fekrazad MH, Heywood G, Lee FC. Phase II trial using a combination of oxaliplatin, capecitabine, and Celecoxib with concurrent radiation for newly diagnosed resectable rectal cancer. Oncologist. 2018;23:2–e5. (PMID: 2915836510.1634/theoncologist.2017-0474)
معلومات مُعتمدة: RGP2/420/44 Deanship of Scientific Research, King Khalid University
فهرسة مساهمة: Keywords: COX-2; COX-2 inhibitor; Cancer; Combinational therapy
المشرفين على المادة: 0 (Cyclooxygenase 2 Inhibitors)
EC 1.14.99.1 (Cyclooxygenase 2)
تواريخ الأحداث: Date Created: 20240102 Date Completed: 20240103 Latest Revision: 20240108
رمز التحديث: 20240108
DOI: 10.1007/s12032-023-02256-7
PMID: 38165473
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-131X
DOI:10.1007/s12032-023-02256-7