دورية أكاديمية

The effect of red blood cell disorders on male fertility and reproductive health.

التفاصيل البيبلوغرافية
العنوان: The effect of red blood cell disorders on male fertility and reproductive health.
المؤلفون: Naelitz BD; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. naelitb2@ccf.org., Khooblall PS; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA., Parekh NV; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA., Vij SC; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA., Rotz SJ; Department of Paediatric Hematology and Oncology, Cleveland Clinic Children's Hospital, Cleveland Clinic, Cleveland, OH, 44195, USA., Lundy SD; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
المصدر: Nature reviews. Urology [Nat Rev Urol] 2024 May; Vol. 21 (5), pp. 303-316. Date of Electronic Publication: 2024 Jan 03.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101500082 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1759-4820 (Electronic) Linking ISSN: 17594812 NLM ISO Abbreviation: Nat Rev Urol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group
مواضيع طبية MeSH: Infertility, Male*/etiology , Hemoglobinopathies*/complications , Bone Marrow Failure Disorders*/complications, Humans ; Male ; Fertility ; Reproductive Health ; Erythrocytes/pathology
مستخلص: Male infertility is defined as a failure to conceive after 12 months of unprotected intercourse owing to suspected male reproductive factors. Non-malignant red blood cell disorders are systemic conditions that have been associated with male infertility with varying severity and strength of evidence. Hereditary haemoglobinopathies and bone marrow failure syndromes have been associated with hypothalamic-pituitary-gonadal axis dysfunction, hypogonadism, and abnormal sperm parameters. Bone marrow transplantation is a potential cure for these conditions, but exposes patients to potentially gonadotoxic chemotherapy and/or radiation that could further impair fertility. Iron imbalance might also reduce male fertility. Thus, disorders of hereditary iron overload can cause iron deposition in tissues that might result in hypogonadism and impaired spermatogenesis, whereas severe iron deficiency can propagate anaemias that decrease gonadotropin release and sperm counts. Reproductive urologists should be included in the comprehensive care of patients with red blood cell disorders, especially when gonadotoxic treatments are being considered, to ensure fertility concerns are appropriately evaluated and managed.
(© 2024. Springer Nature Limited.)
References: Zegers-Hochschild, F. et al. The international glossary on infertility and fertility care, 2017. Fertil. Steril. 108, 393–406 (2017). (PMID: 2876051710.1016/j.fertnstert.2017.06.005)
Agarwal, A. et al. Male infertility. Lancet 397, 319–333 (2021). (PMID: 3330848610.1016/S0140-6736(20)32667-2)
Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015). (PMID: 25928197442452010.1186/s12958-015-0032-1)
Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil. Steril. 103, e18–e25 (2015). (PMID: 10.1016/j.fertnstert.2014.12.103)
Carlsen, E., Giwercman, A., Keiding, N. & Skakkebaek, N. E. Evidence for decreasing quality of semen during past 50 years. BMJ 305, 609–613 (1992). (PMID: 1393072188335410.1136/bmj.305.6854.609)
Mínguez-Alarcón, L. et al. Secular trends in semen parameters among men attending a fertility center between 2000 and 2017: identifying potential predictors. Environ. Int. 121, 1297–1303 (2018). (PMID: 30389382627949810.1016/j.envint.2018.10.052)
Sengupta, P., Dutta, S. & Krajewska-Kulak, E. The disappearing sperms: analysis of reports published between 1980 and 2015. Am. J. Mens. Health 11, 1279–1304 (2017). (PMID: 2709934510.1177/1557988316643383)
Abbaspour, N., Hurrell, R. & Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 19, 164–174 (2014). (PMID: 247786713999603)
Gulek, S., Anderson, G. J. & Collins, J. F. Mechanistic and regulatory aspects of intestinal iron absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G397–G409 (2014). (PMID: 10.1152/ajpgi.00348.2013)
Sebastiani, G., Wilkinson, N. & Pantopoulos, K. Pharmacological targeting of the hepcidin/ferroportin axis. Front. Pharmacol. 7, 160 (2016). (PMID: 27445804491455810.3389/fphar.2016.00160)
Ginzburg, Y. Z. Chapter two - hepcidin-ferroportin axis in health and disease. in: Litwack, G. (ed.) Vitamins and Hormones. 110, 17–45 (Academic Press, 2019).
Nemeth, E. & Ganz, T. The role of hepcidin in iron metabolism. Acta Haematol. 122, 2284–2288 (2009). (PMID: 10.1159/000243791)
Wang, L. & Cherayil, B. J. Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J. Innate Immun. 1, 455–464 (2009). (PMID: 20375603396959510.1159/000210016)
Musci, G., Polticelli, F. & Bonaccorsi di Patti, M. C. Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J. Biol. Chem. 5, 204–215 (2014). (PMID: 249210094050113)
Bartnikas, T. B. Known and potential roles of transferrin in iron biology. Biometals 25, 677–686 (2012). (PMID: 22294463359509210.1007/s10534-012-9520-3)
Sasaki, R., Masuda, S. & Nagao, M. Erythropoietin: multiple physiological functions and regulation of biosynthesis. Biosci. Biotechnol. Biochem. 64, 1775–1793 (2000). (PMID: 1105537810.1271/bbb.64.1775)
Tremellen, K. Oxidative stress and male infertility–a clinical perspective. Hum. Reprod. Update 14, 243–258 (2008). (PMID: 1828124110.1093/humupd/dmn004)
Farid, Y., Bowman, N. S. & Lecat, P. Biochemistry, hemoglobin synthesis. In: StatPearls. (StatPearls Publishing, 2022).
Harewood, J. & Azevedo, A. M. Alpha thalassemia. In: StatPearls. (StatPearls Publishing, 2022).
Forget, B. G. & Bunn, H. F. Classification of the disorders of hemoglobin. Cold Spring Harb. Perspect. Med. 3, a011684 (2013). (PMID: 23378597355234410.1101/cshperspect.a011684)
Therrell, B. L., Lloyd-Puryear, M. A., Eckman, J. R. & Mann, M. Y. Newborn screening for sickle cell diseases in the United States: a review of data spanning 2 decades. Semin. Perinatol. 39, 238–251 (2015). (PMID: 2597978310.1053/j.semperi.2015.03.008)
Sedrak A & Kondamudi NP. Sickle Cell Disease. (StatPearls Publishing, 2022).
Sundd, P., Gladwin, M. T. & Novelli, E. M. Pathophysiology of sickle cell disease. Annu. Rev. Pathol. 14, 263–292 (2019). (PMID: 3033256210.1146/annurev-pathmechdis-012418-012838)
Rees, D. C., Williams, T. N. & Gladwin, M. T. Sickle-cell disease. Lancet 376, 2018–2031 (2010). (PMID: 2113103510.1016/S0140-6736(10)61029-X)
Yasara, N., Premawardhena, A. & Mettananda, S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: the role revisited during COVID-19 pandemic. Orphanet J. Rare Dis. 16, 114 (2021). (PMID: 33648529791998910.1186/s13023-021-01757-w)
Taddesse, A. et al. Hypogonadism in patients with sickle cell disease: central or peripheral? Acta Haematol. 128, 65–68 (2012). (PMID: 2267834710.1159/000337344)
Fageera, W. et al. Placebo response and its determinants in children with ADHD across multiple observers and settings: a randomized clinical trial. Int. J. Methods Psychiatr. Res. 27, e1572 (2018). (PMID: 2866454110.1002/mpr.1572)
Smith-Whitley, K. Reproductive issues in sickle cell disease. Blood 124, 3538–3543 (2014). (PMID: 2547296710.1182/blood-2014-07-577619)
Berthaut, I. et al. Influence of sickle cell disease and treatment with hydroxyurea on sperm parameters and fertility of human males. Haematologica 93, 988–993 (2008). (PMID: 1850880310.3324/haematol.11515)
Nahoum, C. R., Fontes, E. A. & Freire, F. R. Semen analysis in sickle cell disease. Andrologia 12, 542–545 (1980). (PMID: 746904610.1111/j.1439-0272.1980.tb01347.x)
Shin, J.-H., Mori, C. & Shiota, K. Involvement of germ cell apoptosis in the induction of testicular toxicity following hydroxyurea treatment. Toxicol. Appl. Pharmacol. 155, 139–149 (1999). (PMID: 1005316810.1006/taap.1998.8593)
Jones, K. M. et al. Adverse effects of a clinically relevant dose of hydroxyurea used for the treatment of sickle cell disease on male fertility endpoints. Int. J. Environ. Res. Public. Health 6, 1124–1144 (2009). (PMID: 19440437267237510.3390/ijerph6031124)
Sahoo, L. K. et al. Study of seminal fluid parameters and fertility of male sickle cell disease patients and potential impact of hydroxyurea treatment. J. Assoc. Physicians India 65, 22–25 (2017). (PMID: 28782309)
Isabelle, B. et al. Adverse effect of hydroxyurea on spermatogenesis in patients with sickle cell anemia after 6 months of treatment. Blood 130, 2354–2356 (2017). (PMID: 10.1182/blood-2017-03-771857)
Joseph, L. et al. Effect of hydroxyurea exposure before puberty on sperm parameters in males with sickle cell disease. Blood 137, 826–829 (2021). (PMID: 3297655110.1182/blood.2020006270)
As, G. et al. Hydroxyurea does not affect the spermatogonial pool in prepubertal patients with sickle cell disease. Blood 137, 856–859 (2021). (PMID: 10.1182/blood.2020008146)
Fitzhugh, C. D. & Walters, M. C. The case for HLA-identical sibling hematopoietic stem cell transplantation in children with symptomatic sickle cell anemia. Blood Adv. 1, 2563–2567 (2017). (PMID: 29296908572863010.1182/bloodadvances.2017007708)
Sargur Madabushi, S. et al. Development and characterization of a preclinical total marrow irradiation conditioning-based bone marrow transplant model for sickle cell disease. Front. Oncol. 12, 969429 (2022). (PMID: 36147914948560410.3389/fonc.2022.969429)
Bhatia, M. et al. Reduced toxicity, myeloablative conditioning with BU, fludarabine, alemtuzumab and SCT from sibling donors in children with sickle cell disease. Bone Marrow Transpl. 49, 913–920 (2014). (PMID: 10.1038/bmt.2014.84)
Zhao, J. et al. Adolescent male fertility following reduced-intensity conditioning regimen for hematopoietic stem cell transplantation in non-malignant disorders. Pediatr. Transplant. 23, e13496 (2019). (PMID: 3112425310.1111/petr.13496)
Can, B. et al. Gonadal status and sexual function at long-term follow-up after allogeneic stem cell transplantation in adult patients with sickle cell disease. Exp. Clin. Transplant. https://doi.org/10.6002/ect.2021.0392 (2022).
Abraham, A. A. & Tisdale, J. F. Gene therapy for sickle cell disease: moving from the bench to the bedside. Blood 138, 932–941 (2021). (PMID: 34232993906947410.1182/blood.2019003776)
Kanter, J. et al. Biologic and clinical efficacy of lentiglobin for sickle cell disease. N. Engl. J. Med. 386, 617–628 (2022). (PMID: 3489813910.1056/NEJMoa2117175)
Musicki, B. & Burnett, A. L. Testosterone deficiency in sickle cell disease: recognition and remediation. Front. Endocrinol. 13, 892184 (2022). (PMID: 10.3389/fendo.2022.892184)
Araujo, A. B. et al. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 89, 5920–5926 (2004). (PMID: 1557973710.1210/jc.2003-031719)
Leisegang, K., Roychoudhury, S., Slama, P. & Finelli, R. The mechanisms and management of age-related oxidative stress in male hypogonadism associated with non-communicable chronic disease. Antioxid. Basel Switz. 10, 1834 (2021). (PMID: 10.3390/antiox10111834)
Roychoudhury, S. et al. Environmental factors-induced oxidative stress: hormonal and molecular pathway disruptions in hypogonadism and erectile dysfunction. Antioxidants 10, 837 (2021). (PMID: 34073826822522010.3390/antiox10060837)
Vona, R. et al. Sickle cell disease: role of oxidative stress and antioxidant therapy. Antioxid. Basel Switz. 10, 296 (2021). (PMID: 10.3390/antiox10020296)
Levey, H. R., Segal, R. L. & Bivalacqua, T. J. Management of priapism: an update for clinicians. Ther. Adv. Urol. 6, 230–244 (2014). (PMID: 25435917423630010.1177/1756287214542096)
Musicki, B. et al. Testosterone replacement in transgenic sickle cell mice controls priapic activity and upregulates PDE5 expression and eNOS activity in the penis. Andrology 6, 184–191 (2018). (PMID: 2914571010.1111/andr.12442)
Lagoda, G., Sezen, S. F., Cabrini, M. R., Musicki, B. & Burnett, A. L. Molecular analysis of erection regulatory factors in sickle cell disease associated priapism in the human penis. J. Urol. 189, 762–768 (2013). (PMID: 2298242910.1016/j.juro.2012.08.198)
Dean, R. C. & Lue, T. F. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol. Clin. North. Am. 32, 379–395 (2005). (PMID: 16291031135105110.1016/j.ucl.2005.08.007)
Lin, C.-S., Chow, S., Lau, A., Tu, R. & Lue, T. F. Human PDE5A gene encodes three PDE5 isoforms from two alternate promoters. Int. J. Impot. Res. 14, 15–24 (2002). (PMID: 1189647310.1038/sj.ijir.3900802)
Goglia, L. et al. Endothelial regulation of eNOS, PAI-1 and t-PA by testosterone and dihydrotestosterone in vitro and in vivo. Mol. Hum. Reprod. 16, 761–769 (2010). (PMID: 2054763610.1093/molehr/gaq049)
Crane, G. M. & Bennett, N. E. Priapism in sickle cell anemia: emerging mechanistic understanding and better preventative strategies. Anemia 2011, 297364 (2011). (PMID: 2149076210.1155/2011/297364)
Hou, L. T. & Burnett, A. L. Regimented phosphodiesterase type 5 inhibitor use reduces emergency department visits for recurrent ischemic priapism. J. Urol. 205, 545–553 (2021). (PMID: 3291507910.1097/JU.0000000000001365)
Nickel, R. S. et al. Fertility after curative therapy for sickle cell disease: a comprehensive review to guide care. J. Clin. Med. 11, 2318 (2022). (PMID: 35566443910532810.3390/jcm11092318)
Committee Opinion No. 691. Carrier screening for genetic conditions. Obstet. Gynecol. 129, e41–e55 (2017). (PMID: 10.1097/AOG.0000000000001952)
Leichtmann-Bardoogo, Y. et al. Compartmentalization and regulation of iron metabolism proteins protect male germ cells from iron overload. Am. J. Physiol. Endocrinol. Metab. 302, E1519–E1530 (2012). (PMID: 2249634610.1152/ajpendo.00007.2012)
Jabado, N., Canonne-Hergaux, F., Gruenheid, S., Picard, V. & Gros, P. Iron transporter Nramp2/DMT-1 is associated with the membrane of phagosomes in macrophages and Sertoli cells. Blood 100, 2617–2622 (2002). (PMID: 1223917610.1182/blood-2002-04-1182)
Zhang, F.-L. et al. Multi-omics analysis reveals that iron deficiency impairs spermatogenesis by gut-hormone synthesis axis. Ecotoxicol. Environ. Saf. 248, 114344 (2022). (PMID: 3645534910.1016/j.ecoenv.2022.114344)
Lucesoli, F., Caligiuri, M., Roberti, M. F., Perazzo, J. C. & Fraga, C. G. Dose-dependent increase of oxidative damage in the testes of rats subjected to acute iron overload. Arch. Biochem. Biophys. 372, 37–43 (1999). (PMID: 1056241410.1006/abbi.1999.1476)
Angastiniotis, M. & Lobitz, S. Thalassemias: an overview. Int. J. Neonatal Screen. 5, 16 (2019). (PMID: 33072976751024910.3390/ijns5010016)
Bellis, G. & Parant, A. Beta-thalassemia in Mediterranean countries. Findings and outlook. Investig. Geográficas https://doi.org/10.14198/INGEO.19079 (2021).
Bajwa, H. & Basit, H. Thalassemia. in: StatPearls. (StatPearls Publishing, 2022).
Ali, S. et al. Current status of beta-thalassemia and its treatment strategies. Mol. Genet. Genom. Med. 9, e1788 (2021). (PMID: 10.1002/mgg3.1788)
Viprakasit, V. & Ekwattanakit, S. Clinical classification, screening and diagnosis for thalassemia. Hematol. Oncol. Clin. North. Am. 32, 193–211 (2018). (PMID: 2945872610.1016/j.hoc.2017.11.006)
Lal, A. et al. The transfusion management of beta thalassemia in the United States. Transfusion 61, 3027–3039 (2021). (PMID: 34453453929256310.1111/trf.16640)
Taher, A. T. & Saliba, A. N. Iron overload in thalassemia: different organs at different rates. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 265–271 (2017). (PMID: 10.1182/asheducation-2017.1.265)
De Sanctis, V. et al. Hypogonadism in male thalassemia major patients: pathophysiology, diagnosis and treatment. Acta Bio-Med. Atenei Parm. 89, 6–15 (2018).
Stewart, J., Evan, G., Watson, J. & Sikora, K. Detection of the c-myc oncogene product in colonic polyps and carcinomas. Br. J. Cancer 53, 1–6 (1986). (PMID: 3511934200147210.1038/bjc.1986.1)
De Sanctis, V. et al. Gonadal dysfunction in adult male patients with thalassemia major: an update for clinicians caring for thalassemia. Expert. Rev. Hematol. 10, 1095–1106 (2017). (PMID: 2907210010.1080/17474086.2017.1398080)
Skordis, N. & Kyriakou, A. The multifactorial origin of growth failure in thalassaemia. Pediatr. Endocrinol. Rev. PER 8, 271–277 (2011). (PMID: 21705977)
Safarinejad, M. R. Evaluation of semen quality, endocrine profile and hypothalamus-pituitary-testis axis in male patients with homozygous β-thalassemia major. J. Urol. 179, 2327–2332 (2008). (PMID: 1842370610.1016/j.juro.2008.01.103)
Soliman, A., Yasin, M., El-Awwa, A., Osman, M. & de Sanctis, V. Acute effects of blood transfusion on pituitary gonadal axis and sperm parameters in adolescents and young men with thalassemia major: a pilot study. Fertil. Steril. 98, 638–643 (2012). (PMID: 2274922410.1016/j.fertnstert.2012.05.047)
Singer, S. T. et al. Fertility in transfusion-dependent thalassemia men: effects of iron burden on the reproductive axis. Am. J. Hematol. 90, E190–E192 (2015). (PMID: 26044409467694410.1002/ajh.24083)
Perera, D. et al. Sperm DNA damage in potentially fertile homozygous β-thalassaemia patients with iron overload. Hum. Reprod. 17, 1820–1825 (2002). (PMID: 1209384510.1093/humrep/17.7.1820)
Chen, M.-J. et al. Effect of iron overload on impaired fertility in male patients with transfusion-dependent beta-thalassemia. Pediatr. Res. 83, 655–661 (2018). (PMID: 2916637110.1038/pr.2017.296)
ElAlfy, M. & Ragab, E. Alpha thalassemia: practice essentials, pathophysiology, etiology. Egypt. J. Haematol. 38, 149–154 (2013).
Shalitin, S. et al. Serum ferritin level as a predictor of impaired growth and puberty in thalassemia major patients. Eur. J. Haematol. 74, 93–100 (2005). (PMID: 1565489810.1111/j.1600-0609.2004.00371.x)
Multicentre study on prevalence of endocrine complications in thalassaemia major. Italian working group on endocrine complications in non-endocrine diseases. Clin. Endocrinol. 42, 581–586 (1995).
ElAlfy, M., Ragab, E., Abdel-Aziz, E., Massoud, W. & Elsedfy, H. Deferiprone and desferrioxamine combined chelation could improve puberty of adolescent males with β-thalassemia major with preserved pituitary and testicular function. Egypt. J. Haematol. 38, 149.
Bronspiegel-Weintrob, N. et al. Effect of age at the start of iron chelation therapy on gonadal function in beta-thalassemia major. N. Engl. J. Med. 323, 713–719 (1990). (PMID: 238866910.1056/NEJM199009133231104)
Arya, Y. & Sahi, P. K. Cell-based gene therapy for b-thalassemia. Indian. Pediatr. 60, 313–316 (2023). (PMID: 3700284510.1007/s13312-023-2865-1)
Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 378, 1479–1493 (2018). (PMID: 2966922610.1056/NEJMoa1705342)
Cavazzana-Calvo, M. et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467, 318–322 (2010). (PMID: 20844535335547210.1038/nature09328)
Pipe, S. W. et al. Gene therapy with etranacogene dezaparvovec for hemophilia B. N. Engl. J. Med. 388, 706–718 (2023). (PMID: 3681243410.1056/NEJMoa2211644)
Huijben, M. et al. Clomiphene citrate for male infertility: a systematic review and meta-analysis. Andrology 11, 987–996 (2023). (PMID: 3668054910.1111/andr.13388)
Naelitz, B. D. et al. Testosterone and luteinizing hormone predict semen parameter improvement in infertile men treated with anastrozole. Fertil. Steril. 120, 746–754 (2023). (PMID: 3739278210.1016/j.fertnstert.2023.06.032)
Nickel, R. S. et al. Optimising the screening for haemoglobinopathies in pregnancy planning. Hum. Fertil. Camb. Engl. 1–6 https://doi.org/10.1080/14647273.2023.2190041 (2023).
Satirapod, C. et al. Clinical utility of combined preimplantation genetic testing methods in couples at risk of passing on beta thalassemia/hemoglobin E disease: a retrospective review from a single center. PLoS One 14, e0225457 (2019). (PMID: 31751397687213210.1371/journal.pone.0225457)
Chaibunruang, A. et al. Molecular and hematological studies in a large cohort of α(0)-thalassemia in northeast Thailand: data from a single referral center. Blood Cells Mol. Dis. 51, 89–93 (2013). (PMID: 2363926810.1016/j.bcmd.2013.04.003)
Lal, A. & Vichinsky, E. The clinical phenotypes of alpha thalassemia. Hematol. Oncol. Clin. North. Am. 37, 327–339 (2023). (PMID: 3690760610.1016/j.hoc.2022.12.004)
Golfeyz, S., Lewis, S. & Weisberg, I. S. Hemochromatosis: pathophysiology, evaluation, and management of hepatic iron overload with a focus on MRI. Expert. Rev. Gastroenterol. Hepatol. 12, 767–778 (2018). (PMID: 2996610510.1080/17474124.2018.1496016)
Merryweather-Clarke, A. T., Pointon, J. J., Shearman, J. D. & Robson, K. J. Global prevalence of putative haemochromatosis mutations. J. Med. Genet. 34, 275–278 (1997). (PMID: 9138148105091110.1136/jmg.34.4.275)
Pantopoulos, K. Inherited disorders of iron overload. Front. Nutr. 5, (2018).
Buretić-Tomljanović, A. et al. The impact of hemochromatosis mutations and transferrin genotype on gonadotropin serum levels in infertile men. Fertil. Steril. 91, 1793–1800 (2009). (PMID: 1839571710.1016/j.fertnstert.2008.02.129)
Gunel-Ozcan, A., Basar, M. M., Kısa, U. & Ankaralı, H. C. Hereditary haemochromatosis gene (HFE) H63D mutation shows an association with abnormal sperm motility. Mol. Biol. Rep. 36, 1709–1714 (2009). (PMID: 1884643410.1007/s11033-008-9372-7)
Peterlin, B. et al. Analysis of the hemochromatosis mutations C282Y and H63D in infertile men. Fertil. Steril. 86, 1796–1798 (2006). (PMID: 1706758610.1016/j.fertnstert.2006.05.034)
El Osta, R., Grandpre, N., Monnin, N., Hubert, J. & Koscinski, I. Hypogonadotropic hypogonadism in men with hereditary hemochromatosis. Basic. Clin. Androl. 27, 13 (2017). (PMID: 28694969550194310.1186/s12610-017-0057-8)
Tvrda, E., Peer, R., Sikka, S. C. & Agarwal, A. Iron and copper in male reproduction: a double-edged sword. J. Assist. Reprod. Genet. 32, 3–16 (2015). (PMID: 2524592910.1007/s10815-014-0344-7)
McDermott, J. H. & Walsh, C. H. Hypogonadism in hereditary hemochromatosis. J. Clin. Endocrinol. Metab. 90, 2451–2455 (2005). (PMID: 1565737610.1210/jc.2004-0980)
Oehninger, S., Pike, I. & Slotnick, N. Hemochromatosis and male infertility. Obstet. Gynecol. 92, 652–653 (1998). (PMID: 9764650)
Angelopoulos, N. G., Goula, A., Dimitriou, E. & Tolis, G. Reversibility of hypogonadotropic hypogonadism in a patient with the juvenile form of hemochromatosis. Fertil. Steril. 84, 1744.e11–1744.e13 (2005). (PMID: 10.1016/j.fertnstert.2005.05.070)
Ide, V., Vanderschueren, D. & Antonio, L. Treatment of men with central hypogonadism: alternatives for testosterone replacement therapy. Int. J. Mol. Sci. 22, 21 (2020). (PMID: 33375030779278110.3390/ijms22010021)
Meerim, P. Overview of inherited bone marrow failure syndromes. Blood Res 57, 49–54 (2022). (PMID: 10.5045/br.2022.2022012)
Alter, B. P. Inherited bone marrow failure syndromes: considerations pre- and posttransplant. Blood 130, 2257–2264 (2017). (PMID: 29167174571423110.1182/blood-2017-05-781799)
Gulbis, B. et al. Epidemiology of rare anaemias in Europe. Adv. Exp. Med. Biol. 686, 375–396 (2010). (PMID: 2082445710.1007/978-90-481-9485-8_22)
Auerbach, A. D. Fanconi anemia and its diagnosis. Mutat. Res. 668, 4–10 (2009). (PMID: 19622403274294310.1016/j.mrfmmm.2009.01.013)
Fiesco-Roa, M. O., Giri, N., McReynolds, L. J., Best, A. F. & Alter, B. P. Genotype-phenotype associations in Fanconi anemia: a literature review. Blood Rev. 37, 100589 (2019). (PMID: 31351673673064810.1016/j.blre.2019.100589)
Tsui, V. & Crismani, W. The Fanconi anemia pathway and fertility. Trends Genet 35, 199–214 (2019). (PMID: 3068342910.1016/j.tig.2018.12.007)
Liu, J. M., Auerbach, A. D. & Young, N. S. Fanconi anemia presenting unexpectedly in an adult kindred with no dysmorphic features. Am. J. Med. 91, 555–557 (1991). (PMID: 195142110.1016/0002-9343(91)90197-6)
Basbous, J. & Constantinou, A. A tumor suppressive DNA translocase named FANCM. Crit. Rev. Biochem. Mol. Biol. 54, 27–40 (2019). (PMID: 3071441610.1080/10409238.2019.1568963)
Kasak, L. et al. Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia. Am. J. Hum. Genet. 103, 200–212 (2018). (PMID: 30075111608083510.1016/j.ajhg.2018.07.005)
Yin, H. et al. A homozygous FANCM frameshift pathogenic variant causes male infertility. Genet. Med. 21, 62–70 (2019). (PMID: 2989585810.1038/s41436-018-0015-7)
Luo, Y. et al. Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling. PLOS Genet. 10, e1004471 (2014). (PMID: 25010009409170410.1371/journal.pgen.1004471)
Fu, C., Begum, K., Jordan, P. W., He, Y. & Overbeek, P. A. Dearth and delayed maturation of testicular germ cells in Fanconi anemia E mutant male mice. PLoS One 11, e0159800 (2016). (PMID: 27486799497242410.1371/journal.pone.0159800)
Wagner, J. E. et al. Unrelated donor bone marrow transplantation for the treatment of Fanconi anemia. Blood 109, 2256–2262 (2007). (PMID: 17038525180106210.1182/blood-2006-07-036657)
Ginsberg, J. P. et al. Testicular tissue cryopreservation in prepubertal male children: an analysis of parental decision-making. Pediatr. Blood Cancer 61, 1673–1678 (2014). (PMID: 24777742467607610.1002/pbc.25078)
Paustian, L. et al. Androgen therapy in Fanconi anemia: a retrospective analysis of 30 years in Germany. Pediatr. Hematol. Oncol. 33, 5–12 (2016). (PMID: 2690094310.3109/08880018.2015.1129567)
Zhang, Q.-S. et al. Oxymetholone therapy of Fanconi anemia suppresses osteopontin transcription and induces hematopoietic stem cell cycling. Stem Cell Rep. 4, 90–102 (2014). (PMID: 10.1016/j.stemcr.2014.10.014)
Ribeiro, L. L. et al. Excellent option therapy of BONE marrow failure in Fanconi anemia patients without full match donor. Blood 128, 5075 (2016). (PMID: 10.1182/blood.V128.22.5075.5075)
Verlinsky, Y., Rechitsky, S., Schoolcraft, W., Strom, C. & Kuliev, A. Preimplantation diagnosis for Fanconi anemia combined with HLA matching. JAMA 285, 3130–3133 (2001). (PMID: 1142714210.1001/jama.285.24.3130)
Gluckman, E. et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N. Engl. J. Med. 321, 1174–1178 (1989). (PMID: 257193110.1056/NEJM198910263211707)
Lipton, J. M. & Ellis, S. R. Diamond Blackfan anemia: diagnosis, treatment and molecular pathogenesis. Hematol. Oncol. Clin. North. Am. 23, 261–282 (2009). (PMID: 19327583288659110.1016/j.hoc.2009.01.004)
Vlachos, A. et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br. J. Haematol. 142, 859–876 (2008). (PMID: 18671700265447810.1111/j.1365-2141.2008.07269.x)
Piantanida, N. et al. Deficiency of ribosomal protein S26, which is mutated in a subset of patients with Diamond Blackfan anemia, impairs erythroid differentiation. Front. Genet. 13, (2022).
Ohene-Abuakwa, Y., Orfali, K. A., Marius, C. & Ball, S. E. Two-phase culture in Diamond Blackfan anemia: localization of erythroid defect. Blood 105, 838–846 (2005). (PMID: 1523841910.1182/blood-2004-03-1016)
Da Costa, L. M., Marie, I. & Leblanc, T. M. Diamond-Blackfan anemia. Hematol. Am. Soc. Hematol. Educ. Program. 2021, 353–360 (2021). (PMID: 10.1182/hematology.2021000314)
Narla, A., Vlachos, A. & Nathan, D. G. Diamond Blackfan anemia treatment: past, present, and future. Semin. Hematol. 48, 117–123 (2011). (PMID: 21435508307377710.1053/j.seminhematol.2011.01.004)
Quarello, P., Ramenghi, U. & Fagioli, F. Diamond-Blackfan anaemia with iron overload: a serious issue. Br. J. Haematol. 199, 171–172 (2022). (PMID: 3592952910.1111/bjh.18393)
Sánchez González, S. R. et al. Cortisol modulates Ca2+ signaling and acrosome reaction in human sperm. Andrology 11, 134–142 (2023). (PMID: 3625151310.1111/andr.13319)
El Osta, R. et al. Anabolic steroids abuse and male infertility. Basic. Clin. Androl. 26, 2 (2016). (PMID: 26855782474444110.1186/s12610-016-0029-4)
HAMPL, R. & STÁRKA, L. Glucocorticoids affect male testicular steroidogenesis. Physiol. Res. 69, S205–S210 (2020). (PMID: 33094619860372710.33549/physiolres.934508)
Whirledge, S. & Cidlowski, J. A. Glucocorticoids, stress, and fertility. Minerva Endocrinol. 35, 109–125 (2010). (PMID: 205959393547681)
Chen, Y., Wang, Q., Wang, F.-F., Gao, H.-B. & Zhang, P. Stress induces glucocorticoid-mediated apoptosis of rat Leydig cells in vivo. Stress 15, 74–84 (2012). (PMID: 2179036810.3109/10253890.2011.585188)
Yazawa, H., Sasagawa, I. & Nakada, T. Apoptosis of testicular germ cells induced by exogenous glucocorticoid in rats. Hum. Reprod. 15, 1917–1920 (2000). (PMID: 1096698610.1093/humrep/15.9.1917)
Remacha, A. et al. Guidelines on haemovigilance of post-transfusional iron overload. Blood Transfus. 11, 128–139 (2013). (PMID: 227902723557483)
Kuliev, A., Rechitsky, S., Tur-Kaspa, I. & Verlinsky, Y. Preimplantation genetics: improving access to stem cell therapy. Ann. N. Y. Acad. Sci. 1054, 223–227 (2005). (PMID: 1633966910.1196/annals.1345.028)
Wagner, J. E., Kahn, J. P., Wolf, S. M. & Lipton, J. M. Preimplantation testing to produce an HLA-matched donor infant. JAMA 292, 803–804 (2004). (PMID: 15315993)
Attia, M., Kripalani, S., Darbari, I. & Nickel, R. S. Parents of children with sickle cell disease are interested in preimplantation genetic testing. J. Pediatr. 223, 178–182.e2 (2020). (PMID: 3258661910.1016/j.jpeds.2020.04.027)
Fishman, S. M., Christian, P. & West, K. P. The role of vitamins in the prevention and control of anaemia. Public. Health Nutr. 3, 125–150 (2000). (PMID: 1094838110.1017/S1368980000000173)
Koury, M. J. & Ponka, P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu. Rev. Nutr. 24, 105–131 (2004). (PMID: 1518911510.1146/annurev.nutr.24.012003.132306)
Kim, N. H. et al. Should asymptomatic young men with iron deficiency anemia necessarily undergo endoscopy? Korean J. Intern. Med. 33, 1084–1092 (2018). (PMID: 29294595623439810.3904/kjim.2016.421)
Killip, S., Bennett, J. M. & Chambers, M. D. Iron deficiency anemia. Am. Fam. Physician 75, 671–678 (2007). (PMID: 17375513)
Zanella, A. et al. Sensitivity and predictive value of serum ferritin and free erythrocyte protoporphyrin for iron deficiency. J. Lab. Clin. Med. 113, 73–78 (1989). (PMID: 2909654)
Wang, W., Knovich, M. A., Coffman, L. G., Torti, F. M. & Torti, S. V. Serum ferritin: past, present and future. Biochim. Biophys. Acta 1800, 760–769 (2010). (PMID: 20304033289323610.1016/j.bbagen.2010.03.011)
Johnson-Wimbley, T. D. & Graham, D. Y. Diagnosis and management of iron deficiency anemia in the 21st century. Ther. Adv. Gastroenterol. 4, 177–184 (2011). (PMID: 10.1177/1756283X11398736)
Reyes, J. G. et al. The hypoxic testicle: physiology and pathophysiology. Oxid. Med. Cell. Longev. 2012, 929285 (2012). (PMID: 23056665346591310.1155/2012/929285)
Li, Z. et al. Effects of environmental and pathological hypoxia on male fertility. Front. Cell Dev. Biol. 9, 725933 (2021). (PMID: 34589489847380210.3389/fcell.2021.725933)
Gosney, J. R. Effects of hypobaric hypoxia on the Leydig cell population of the testis of the rat. J. Endocrinol. 103, 59–62 (1984). (PMID: 648129410.1677/joe.0.1030059)
Saxena, D. K. Effect of hypoxia by intermittent altitude exposure on semen characteristics and testicular morphology of male rhesus monkeys. Int. J. Biometeorol. 38, 137–140 (1995). (PMID: 774452810.1007/BF01208490)
Donayre, J., Guerra-García, R., Moncloa, F. & Sobrevilla, L. A. Endocrine studies at high altitude. IV. Changes in the semen of men. J. Reprod. Fertil. 16, 55–58 (1968). (PMID: 566700410.1530/jrf.0.0160055)
Verratti, V. et al. Evidence that chronic hypoxia causes reversible impairment on male fertility. Asian J. Androl. 10, 602–606 (2008). (PMID: 1809751110.1111/j.1745-7262.2008.00346.x)
Soliman, A., Yassin, M. & De Sanctis, V. Intravenous iron replacement therapy in eugonadal males with iron-deficiency anemia: effects on pituitary gonadal axis and sperm parameters; a pilot study. Indian. J. Endocrinol. Metab. 18, 310–316 (2014). (PMID: 24944924405612810.4103/2230-8210.131158)
Mehta, S. et al. Assessment of pituitary gonadal axis and sperm parameters in anemic eugonadal males before and after correction of iron deficiency anemia. J. Assoc. Physicians India 66, 11–12 (2018). (PMID: 31321929)
Nikolaev, A. A., Lutskiĭ, D. L., Nikolaeva, N. N. & Lozhkina, L. V. [Iron and nonheme iron protein metabolism in ejaculates with varying degrees of fertility]. Urol. Nefrol. 5, 27–31 (1998).
Tsao, C.-W., Liao, Y.-R., Chang, T.-C., Liew, Y.-F. & Liu, C.-Y. Effects of iron supplementation on testicular function and spermatogenesis of iron-deficient rats. Nutrients 14, 2063 (2022). (PMID: 35631204914460110.3390/nu14102063)
Schlegel, P. N. et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. J. Urol. 205, 36–43 (2021). (PMID: 3329525710.1097/JU.0000000000001521)
Short, M. W. & Domagalski, J. E. Iron deficiency anemia: evaluation and management. Am. Fam. Physician 87, 98–104 (2013). (PMID: 23317073)
Venkatramanan, S., Armata, I. E., Strupp, B. J. & Finkelstein, J. L. Vitamin B-12 and cognition in children. Adv. Nutr. Bethesda Md. 7, 879–888 (2016). (PMID: 10.3945/an.115.012021)
Melse-Boonstra, A. Bioavailability of micronutrients from nutrient-dense whole foods: zooming in on dairy, vegetables, and fruits. Front. Nutr. 7, 101 (2020). (PMID: 32793622739399010.3389/fnut.2020.00101)
Diaz, K. et al. Prevalence of folic acid deficiency and cost effectiveness of folic acid testing: a single center experience. Blood 132, 4878 (2018). (PMID: 10.1182/blood-2018-99-111607)
Shipton, M. J. & Thachil, J. Vitamin B12 deficiency — a 21st century perspective. Clin. Med. 15, 145–150 (2015). (PMID: 10.7861/clinmedicine.15-2-145)
Stover, P. J. Physiology of folate and vitamin B12 in health and disease. Nutr. Rev. 62, S3–S12 (2004). (PMID: 1529844210.1111/j.1753-4887.2004.tb00070.x)
Nagao, T. & Hirokawa, M. Diagnosis and treatment of macrocytic anemias in adults. J. Gen. Fam. Med. 18, 200–204 (2017). (PMID: 29264027568941310.1002/jgf2.31)
Baylin, S. B. et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum. Mol. Genet. 10, 687–692 (2001). (PMID: 1125710010.1093/hmg/10.7.687)
Steluti, J., Palchetti, C. Z., Miranda, A. M., Fisberg, R. M. & Marchioni, D. M. DNA methylation and one-carbon metabolism related nutrients and polymorphisms: analysis after mandatory flour fortification with folic acid. Br. J. Nutr. 123, 23–29 (2020). (PMID: 3158398810.1017/S0007114519002526)
Boxmeer, J. C. et al. Low folate in seminal plasma is associated with increased sperm DNA damage. Fertil. Steril. 92, 548–556 (2009). (PMID: 1872260210.1016/j.fertnstert.2008.06.010)
Wang, W. et al. Studying the mechanism of sperm DNA damage caused by folate deficiency. J. Cell. Mol. Med. 26, 776–788 (2022). (PMID: 3495302110.1111/jcmm.17119)
Wong, W. Y. et al. Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial. Fertil. Steril. 77, 491–498 (2002). (PMID: 1187220110.1016/S0015-0282(01)03229-0)
Banihani, S. A. Vitamin B12 and semen quality. Biomolecules 7, 42 (2017). (PMID: 28598359548573110.3390/biom7020042)
Zhang, Y., Zhang, W., Dai, Y., Jiang, H. & Zhang, X. Serum folic acid and erectile dysfunction: a systematic review and meta-analysis. Sex. Med. 9, 100356 (2021). (PMID: 34051538824035210.1016/j.esxm.2021.100356)
Ekong, A., Berg, L., Amos, R. J. & Tsitsikas, D. A. Regular automated red cell exchange transfusion in the management of stuttering priapism complicating sickle cell disease. Br. J. Haematol. 180, 585–588 (2018). (PMID: 2772309110.1111/bjh.14393)
Levey, H. R., Kutlu, O. & Bivalacqua, T. J. Medical management of ischemic stuttering priapism: a contemporary review of the literature. Asian J. Androl. 14, 156–163 (2012). (PMID: 2205738010.1038/aja.2011.114)
Bivalacqua, T. J. et al. The diagnosis and management of recurrent ischemic priapism, priapism in sickle cell patients, and non-ischemic priapism: an AUA/SMSNA guideline. J. Urol. 208, 43–52 (2022). (PMID: 3553614210.1097/JU.0000000000002767)
تواريخ الأحداث: Date Created: 20240103 Date Completed: 20240508 Latest Revision: 20240604
رمز التحديث: 20240604
DOI: 10.1038/s41585-023-00838-8
PMID: 38172196
قاعدة البيانات: MEDLINE
الوصف
تدمد:1759-4820
DOI:10.1038/s41585-023-00838-8