دورية أكاديمية

IKAROS and AIOLOS directly regulate AP-1 transcriptional complexes and are essential for NK cell development.

التفاصيل البيبلوغرافية
العنوان: IKAROS and AIOLOS directly regulate AP-1 transcriptional complexes and are essential for NK cell development.
المؤلفون: Goh W; The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia., Sudholz H; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Foroutan M; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.; oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia., Scheer S; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.; Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg., Pfefferle A; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.; oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia., Delconte RB; The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Meng X; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Shen Z; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Hennessey R; The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Kong IY; The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia., Schuster IS; Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia., Andoniou CE; Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia., Davis MJ; The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.; Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.; The South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia., Hediyeh-Zadeh S; The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia., Souza-Fonseca-Guimaraes F; Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia., Parish IA; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia., Beavis P; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia., Thiele D; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Chopin M; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia., Degli-Esposti MA; Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia., Cursons J; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.; oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia., Kallies A; Department of Microbiology & Immunology, Faculty of Medicine, Dentistry and Health Sciences & Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia., Rautela J; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.; oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia., Nutt SL; The Walter and Eliza Hall Institute of Medical Research. Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia., Huntington ND; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. nicholas.huntington@monash.edu.; oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia. nicholas.huntington@monash.edu.
المصدر: Nature immunology [Nat Immunol] 2024 Feb; Vol. 25 (2), pp. 240-255. Date of Electronic Publication: 2024 Jan 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature America Inc Country of Publication: United States NLM ID: 100941354 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2916 (Electronic) Linking ISSN: 15292908 NLM ISO Abbreviation: Nat Immunol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature America Inc. c2000-
مواضيع طبية MeSH: Transcription Factor AP-1*/genetics , Killer Cells, Natural*/metabolism, Receptors, Interleukin-15 ; Ikaros Transcription Factor/genetics ; Ikaros Transcription Factor/metabolism
مستخلص: Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.
(© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
References: Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013). (PMID: 2334841710.1038/nri3365)
Cerwenka, A. & Lanier, L. L. Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 1, 41–49 (2001). (PMID: 1190581310.1038/35095564)
Huntington, N. D., Cursons, J. & Rautela, J. The cancer–natural killer cell immunity cycle. Nat. Rev. Cancer 20, 437–454 (2020). (PMID: 3258132010.1038/s41568-020-0272-z)
Boos, M. D., Yokota, Y., Eberl, G. & Kee, B. L. Mature natural killer cell and lymphoid tissue–inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007). (PMID: 17452521211856910.1084/jem.20061959)
Delconte, R. B. et al. The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity 44, 103–115 (2016). (PMID: 2679524610.1016/j.immuni.2015.12.007)
Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118–1124 (2009). (PMID: 1974976310.1038/ni.1787)
Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009). (PMID: 19995955280647410.1084/jem.20092176)
Goh, W. et al. Hhex directly represses BIM-dependent apoptosis to promote NK cell development and maintenance. Cell Rep. 33, 108285 (2020). (PMID: 3308606710.1016/j.celrep.2020.108285)
Viant, C. et al. Cell cycle progression dictates the requirement for BCL2 in natural killer cell survival. J. Exp. Med. 214, 491–510 (2017). (PMID: 28057804529485810.1084/jem.20160869)
Huntington, N. D. et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat. Immunol. 8, 856–863 (2007). (PMID: 17618288295173910.1038/ni1487)
Sathe, P. et al. Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat. Commun. 5, 4539 (2014). (PMID: 2511938210.1038/ncomms5539)
Huntington, N. D. The unconventional expression of IL-15 and its role in NK cell homeostasis. Immunol. Cell Biol. 92, 210–213 (2014). (PMID: 2449280010.1038/icb.2014.1)
Robbins, S. H. et al. Cutting edge: inhibitory functions of the killer cell lectin-like receptor G1 molecule during the activation of mouse NK cells. J. Immunol. 168, 2585–2589 (2002). (PMID: 1188441910.4049/jimmunol.168.6.2585)
Delconte, R. B. et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 17, 816–824 (2016). (PMID: 2721369010.1038/ni.3470)
Hayashi, T. et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br. J. Haematol. 128, 192–203 (2005). (PMID: 1563885310.1111/j.1365-2141.2004.05286.x)
Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014). (PMID: 2429262510.1126/science.1244851)
Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014). (PMID: 2429262310.1126/science.1244917)
Georgopoulos, K., Winandy, S. & Avitahl, N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu. Rev. Immunol. 15, 155–176 (1997). (PMID: 914368510.1146/annurev.immunol.15.1.155)
Schjerven, H. et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat. Immunol. 14, 1073–1083 (2013). (PMID: 24013668380005310.1038/ni.2707)
Georgopoulos, K., Moore, D. D. & Derfler, B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258, 808–812 (1992). (PMID: 143979010.1126/science.1439790)
Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994). (PMID: 792337310.1016/0092-8674(94)90407-3)
Yoshida, T., Ng, S. Y. -M., Zuniga-Pflucker, J. C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 7, 382–391 (2006). (PMID: 1651839310.1038/ni1314)
Papathanasiou, P. et al. Self-renewal of the long-term reconstituting subset of hematopoietic stem cells is regulated by Ikaros. Stem Cells 27, 3082–3092 (2009). (PMID: 1981695210.1002/stem.232)
Schwickert, T. A. et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat. Immunol. 15, 283–293 (2014). (PMID: 24509509579018110.1038/ni.2828)
Ma, S. et al. Ikaros and Aiolos inhibit pre-B-cell proliferation by directly suppressing c-Myc expression. Mol. Cell. Biol. 30, 4149–4158 (2010). (PMID: 20566697293756210.1128/MCB.00224-10)
Avitahl, N. et al. Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity 10, 333–343 (1999). (PMID: 1020448910.1016/S1074-7613(00)80033-3)
Kim, H. -J. et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 350, 334–339 (2015). (PMID: 26472910462763510.1126/science.aad0616)
Holmes, M. L. et al. Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO J. 33, 2721–2734 (2014). (PMID: 25319415428257810.15252/embj.201487900)
Sun, L., Liu, A. & Georgopoulos, K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 15, 5358–5369 (1996). (PMID: 889558045227910.1002/j.1460-2075.1996.tb00920.x)
Rautela, J. & Huntington, N. D. IL-15 signaling in NK cell cancer immunotherapy. Curr. Opin. Immunol. 44, 1–6 (2017). (PMID: 2783576210.1016/j.coi.2016.10.004)
Adams, N. M. et al. Transcription factor IRF8 orchestrates the adaptive natural killer cell response. Immunity 48, 1172–1182 (2018). (PMID: 29858012623371510.1016/j.immuni.2018.04.018)
Beaulieu, A. M., Zawislak, C. L., Nakayama, T. & Sun, J. C. The transcription factor Zbtb32 controls the proliferative burst of virus-specific natural killer cells responding to infection. Nat. Immunol. 15, 546–553 (2014). (PMID: 24747678440430410.1038/ni.2876)
Iacobucci, I. et al. IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia. PLoS ONE 7, e40934 (2012). (PMID: 22848414340502310.1371/journal.pone.0040934)
Javed, A. et al. Ikaros family proteins redundantly regulate temporal patterning in the developing mouse retina. Development 150, dev200436 (2023). (PMID: 3653758010.1242/dev.200436)
Kim, W. S. et al. Suppressor of cytokine signaling 2 negatively regulates NK cell differentiation by inhibiting JAK2 activity. Sci. Rep. 7, 46153 (2017). (PMID: 28383049538267010.1038/srep46153)
Delconte, R. B. et al. NK cell priming from endogenous homeostatic signals is modulated by CIS. Front. Immunol. 11, 75 (2020). (PMID: 32082327700522210.3389/fimmu.2020.00075)
Bernard, P. -L. et al. Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity. J. Immunother. Cancer 10, e004244 (2022). (PMID: 35589278912148310.1136/jitc-2021-004244)
Putz, E. M. et al. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncoimmunology 6, e1267892 (2017). (PMID: 28344878535393510.1080/2162402X.2016.1267892)
Karin, M., Liu, Z. G. & Zandi, E. AP-1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997). (PMID: 906926310.1016/S0955-0674(97)80068-3)
Schnoegl, D., Hiesinger, A., Huntington, N. D. & Gotthardt, D. AP-1 transcription factors in cytotoxic lymphocyte development and antitumor immunity. Curr. Opin. Immunol. 85, 102397 (2023). (PMID: 3793149910.1016/j.coi.2023.102397)
Delpoux, A. et al. FOXO1 constrains activation and regulates senescence in CD8 T cells. Cell Rep. 34, 108674 (2021). (PMID: 3350341310.1016/j.celrep.2020.108674)
Passegué, E., Jochum, W., Behrens, A., Ricci, R. & Wagner, E. F. JunB can substitute for Jun in mouse development and cell proliferation. Nat. Genet. 30, 158–166 (2002). (PMID: 1181896110.1038/ng790)
Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α + dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008). (PMID: 19008445275661110.1126/science.1164206)
Riera-Sans, L. & Behrens, A. Regulation of αβ/γδ T cell development by the activator protein 1 transcription factor c-Jun. J. Immunol. 178, 5690–5700 (2007). (PMID: 1744295210.4049/jimmunol.178.9.5690)
Li, P. et al. BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature 490, 543–546 (2012). (PMID: 22992523353750810.1038/nature11530)
Ellin, F., Landström, J., Jerkeman, M. & Relander, T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry. Blood 124, 1570–1577 (2014). (PMID: 2500613010.1182/blood-2014-04-573089)
Fedele, P. L. et al. Loss of IRF4 results in multiple myeloma cell apoptosis through the transcriptional upregulation of the BH3-only proteins Bmf and BIM. Blood 134, 3103 (2019). (PMID: 10.1182/blood-2019-126417)
Fedele, P. L. et al. The transcription factor IRF4 represses proapoptotic BMF and BIM to licence multiple myeloma survival. Leukemia 35, 2114–2118 (2021). (PMID: 3314926510.1038/s41375-020-01078-0)
Fehniger, T. A. et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8 + T cells. J. Exp. Med. 193, 219–231 (2001). (PMID: 11208862219333610.1084/jem.193.2.219)
Narni-Mancinelli, E. et al. Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proc. Natl Acad. Sci. USA 108, 18324–18329 (2011). (PMID: 22021440321504910.1073/pnas.1112064108)
Rautela, J., Surgenor, E. & Huntington, N. D. Drug target validation in primary human natural killer cells using CRISPR RNP. J. Leukoc. Biol. 108, 1397–1408 (2020).
Schuster, I. S. et al. TRAIL + NK cells control CD4 + T cell responses during chronic viral infection to limit autoimmunity. Immunity 41, 646–656 (2014). (PMID: 2536757610.1016/j.immuni.2014.09.013)
Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013). (PMID: 23558742366480310.1093/nar/gkt214)
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352)
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). (PMID: 1991030810.1093/bioinformatics/btp616)
Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 18798982259271510.1186/gb-2008-9-9-r137)
Lun, A. T. L. & Smyth, G. K. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res. 44, e45 (2016). (PMID: 2657858310.1093/nar/gkv1191)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 22388286332238110.1038/nmeth.1923)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 2422767710.1093/bioinformatics/btt656)
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). (PMID: 25605792440251010.1093/nar/gkv007)
Liang, S. et al. A small molecule inhibitor of PTP1B and PTPN2 enhances T cell anti-tumor immunity. Nat. Commun. 14, 4524 (2023). (PMID: 375006111037454510.1038/s41467-023-40170-8)
معلومات مُعتمدة: 1195296 Department of Health | National Health and Medical Research Council (NHMRC); 1124784 Department of Health | National Health and Medical Research Council (NHMRC)
المشرفين على المادة: 0 (Transcription Factor AP-1)
0 (Receptors, Interleukin-15)
148971-36-2 (Ikaros Transcription Factor)
تواريخ الأحداث: Date Created: 20240105 Date Completed: 20240205 Latest Revision: 20240206
رمز التحديث: 20240206
DOI: 10.1038/s41590-023-01718-4
PMID: 38182668
قاعدة البيانات: MEDLINE