دورية أكاديمية

UBE2A and UBE2B are recruited by an atypical E3 ligase module in UBR4.

التفاصيل البيبلوغرافية
العنوان: UBE2A and UBE2B are recruited by an atypical E3 ligase module in UBR4.
المؤلفون: Barnsby-Greer L; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK., Mabbitt PD; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK.; Scion, Rotorua, New Zealand., Dery MA; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK., Squair DR; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK., Wood NT; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK., Lamoliatte F; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK., Lange SM; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK., Virdee S; MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK. s.s.virdee@dundee.ac.uk.
المصدر: Nature structural & molecular biology [Nat Struct Mol Biol] 2024 Feb; Vol. 31 (2), pp. 351-363. Date of Electronic Publication: 2024 Jan 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101186374 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1545-9985 (Electronic) Linking ISSN: 15459985 NLM ISO Abbreviation: Nat Struct Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York : Nature Pub. Group, c2004-
مواضيع طبية MeSH: Ubiquitin-Protein Ligases*/metabolism , Ubiquitin-Conjugating Enzymes*/metabolism, Humans ; Ubiquitin/metabolism ; Ubiquitin-Activating Enzymes/metabolism ; Catalysis ; Ubiquitination ; Calmodulin-Binding Proteins/metabolism
مستخلص: UBR4 is a 574 kDa E3 ligase (E3) of the N-degron pathway with roles in neurodevelopment, age-associated muscular atrophy and cancer. The catalytic module that carries out ubiquitin (Ub) transfer remains unknown. Here we identify and characterize a distinct E3 module within human UBR4 consisting of a 'hemiRING' zinc finger, a helical-rich UBR zinc-finger interacting (UZI) subdomain, and an N-terminal region that can serve as an affinity factor for the E2 conjugating enzyme (E2). The structure of an E2-E3 complex provides atomic-level insight into the specificity determinants of the hemiRING toward the cognate E2s UBE2A/UBE2B. Via an allosteric mechanism, the UZI subdomain modestly activates the Ub-loaded E2 (E2∼Ub). We propose attenuated activation is complemented by the intrinsically high lysine reactivity of UBE2A, and their cooperation imparts a reactivity profile important for substrate specificity and optimal degradation kinetics. These findings reveal the mechanistic underpinnings of a neuronal N-degron E3, its specific recruitment of UBE2A, and highlight the underappreciated architectural diversity of cross-brace domains with Ub E3 activity.
(© 2024. The Author(s).)
References: Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc. Natl Acad. Sci. USA 116, 358–366 (2019). (PMID: 30622213632997510.1073/pnas.1816596116)
Tasaki, T. et al. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol. Cell. Biol. 25, 7120–7136 (2005). (PMID: 16055722119025010.1128/MCB.25.16.7120-7136.2005)
Matta-Camacho, E., Kozlov, G., Li, F. F. & Gehring, K. Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat. Struct. Mol. Biol. 17, 1182–1187 (2010). (PMID: 2083524210.1038/nsmb.1894)
Pan, M. et al. Structural insights into Ubr1-mediated N-degron polyubiquitination. Nature 600, 334–338 (2021). (PMID: 34789879879822510.1038/s41586-021-04097-8)
Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009). (PMID: 1948972510.1146/annurev.biochem.78.101807.093809)
Ohi, M. D., Vander Kooi, C. W., Rosenberg, J. A., Chazin, W. J. & Gould, K. L. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat. Struct. Biol. 10, 250–255 (2003). (PMID: 12627222588189110.1038/nsb906)
Baek, K., Scott, D. C. & Schulman, B. A. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Curr. Opin. Struct. Biol. 67, 101–109 (2021). (PMID: 3316024910.1016/j.sbi.2020.10.007)
Plechanovova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012). (PMID: 22842904344224310.1038/nature11376)
Pruneda, J. N. et al. Structure of an E3:E2∼Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47, 933–942 (2012). (PMID: 22885007346226210.1016/j.molcel.2012.07.001)
Dou, H., Buetow, L., Sibbet, G. J., Cameron, K. & Huang, D. T. BIRC7–E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 19, 876–883 (2012). (PMID: 2290236910.1038/nsmb.2379)
Zhang, M. et al. Chaperoned ubiquitylation-crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP–Ubc13–Uev1a complex. Mol. Cell 20, 525–538 (2005). (PMID: 1630791710.1016/j.molcel.2005.09.023)
Wickliffe, K. E., Lorenz, S., Wemmer, D. E., Kuriyan, J. & Rape, M. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144, 769–E81 (2011). (PMID: 21376237307210810.1016/j.cell.2011.01.035)
Wenzel, D. M., Lissounov, A., Brzovic, P. S. & Klevit, R. E. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474, 105–108 (2011). (PMID: 21532592344430110.1038/nature09966)
Pao, K. C. et al. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature 556, 381–385 (2018). (PMID: 2964351110.1038/s41586-018-0026-1)
Scheffner, M., Nuber, U. & Huibregtse, J. M. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995). (PMID: 780004410.1038/373081a0)
Abbas, T. et al. CRL1–FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol. Cell 49, 1147–1158 (2013). (PMID: 23478445361507810.1016/j.molcel.2013.02.003)
Abida, W. M., Nikolaev, A., Zhao, W., Zhang, W. & Gu, W. FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J. Biol. Chem. 282, 1797–1804 (2007). (PMID: 1709874610.1074/jbc.M609001200)
Nakaya, T. et al. p600 plays essential roles in fetal development. PLoS ONE 8, e66269 (2013). (PMID: 23824717368887310.1371/journal.pone.0066269)
Shim, S. Y. et al. Protein 600 is a microtubule/endoplasmic reticulum-associated protein in CNS neurons. J. Neurosci. 28, 3604–3614 (2008). (PMID: 18385319667107310.1523/JNEUROSCI.5278-07.2008)
Ohara, O. et al. Construction and characterization of human brain cDNA libraries suitable for analysis of cDNA clones encoding relatively large proteins. DNA Res. 4, 53–59 (1997). (PMID: 917949610.1093/dnares/4.1.53)
Belzil, C. et al. p600 regulates spindle orientation in apical neural progenitors and contributes to neurogenesis in the developing neocortex. Biol. Open 3, 475–485 (2014). (PMID: 24812355405808110.1242/bio.20147807)
Belzil, C. et al. A Ca 2+ -dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J. Biol. Chem. 288, 24452–24464 (2013). (PMID: 23861403375014510.1074/jbc.M113.483107)
Nakatani, Y. et al. p600, a unique protein required for membrane morphogenesis and cell survival. Proc. Natl Acad. Sci. USA 102, 15093–15098 (2005). (PMID: 16214886124799110.1073/pnas.0507458102)
DeMasi, J., Huh, K. W., Nakatani, Y., Munger, K. & Howley, P. M. Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc. Natl Acad. Sci. USA 102, 11486–11491 (2005). (PMID: 16081543118255310.1073/pnas.0505322102)
Huh, K. W. et al. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc. Natl Acad. Sci. USA 102, 11492–11497 (2005). (PMID: 16061792118213510.1073/pnas.0505337102)
Kim, S. T. et al. The N-recognin UBR4 of the N-end rule pathway is targeted to and required for the biogenesis of the early endosome. J. Cell Sci. 131, jcs217646 (2018). (PMID: 3011158210.1242/jcs.217646)
Wishart, T. M. et al. Combining comparative proteomics and molecular genetics uncovers regulators of synaptic and axonal stability and degeneration in vivo. PLoS Genet. 8, e1002936 (2012). (PMID: 22952455343133710.1371/journal.pgen.1002936)
Gunadi et al. Aberrant UBR4 expressions in Hirschsprung disease patients. BMC Pediatr. 19, 493 (2019). (PMID: 31830949690735710.1186/s12887-019-1879-7)
Hunt, L. C. et al. Antagonistic control of myofiber size and muscle protein quality control by the ubiquitin ligase UBR4 during aging. Nat. Commun. 12, 1418 (2021). (PMID: 33658508793005310.1038/s41467-021-21738-8)
Leboeuf, D. et al. Downregulation of the Arg/N-degron pathway sensitizes cancer cells to chemotherapy in vivo. Mol. Ther. 28, 1092–1104 (2020). (PMID: 32087767713261710.1016/j.ymthe.2020.01.021)
Parsons, K., Nakatani, Y. & Nguyen, M. D. p600/UBR4 in the central nervous system. Cell. Mol. Life Sci. 72, 1149–1160 (2015). (PMID: 2542464510.1007/s00018-014-1788-8)
Hong, J. H. et al. KCMF1 (potassium channel modulatory factor 1) links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation. Mol. Cell Proteom. 14, 674–685 (2015). (PMID: 10.1074/mcp.M114.042168)
Wu, P. Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003). (PMID: 1451726120448410.1093/emboj/cdg501)
Yunus, A. A. & Lima, C. D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 13, 491–499 (2006). (PMID: 1673228310.1038/nsmb1104)
Kamadurai, H. B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B∼ubiquitin–HECT(NEDD4L) complex. Mol. Cell 36, 1095–1102 (2009). (PMID: 20064473285919510.1016/j.molcel.2009.11.010)
Berndsen, C. E., Wiener, R., Yu, I. W., Ringel, A. E. & Wolberger, C. A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Nat. Chem. Biol. 9, 154–156 (2013). (PMID: 23292652357810910.1038/nchembio.1159)
Lechtenberg, B. C. et al. Structure of a HOIP/E2∼ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529, 546–550 (2016). (PMID: 26789245485647910.1038/nature16511)
Mabbitt, P. D. et al. Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Nat. Chem. Biol. 16, 1227–1236 (2020). (PMID: 32747811761053010.1038/s41589-020-0598-6)
Zhu, K. et al. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates. Sci. Adv. 8, eadd4253 (2022). (PMID: 3619798610.1126/sciadv.add4253)
Plechanovova, A. et al. Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nat. Struct. Mol. Biol. 18, 1052–1059 (2011). (PMID: 21857666332652510.1038/nsmb.2108)
Poirson, J. Proteome-scale induced proximity screens reveal highly potent protein degraders and stabilizers. Preprint at bioRxiv (2022).
Smit, J. J. & Sixma, T. K. RBR E3-ligases at work. EMBO Rep. 15, 142–154 (2014). (PMID: 24469331398986010.1002/embr.201338166)
Holm, L. Using Dali for protein structure comparison. Methods Mol. Biol. 2112, 29–42 (2020). (PMID: 3200627610.1007/978-1-0716-0270-6_3)
Conroy, J. et al. A novel locus for episodic ataxia: UBR4 the likely candidate. Eur. J. Hum. Genet 22, 505–510 (2014). (PMID: 2398269210.1038/ejhg.2013.173)
Choi, K. D. et al. Genetic variants associated with episodic ataxia in Korea. Sci. Rep. 7, 13855 (2017). (PMID: 29062094565383710.1038/s41598-017-14254-7)
Groocock, L. M. et al. RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response. EMBO Rep. 15, 601–608 (2014). (PMID: 24714598421008810.1002/embr.201338369)
Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl–UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000). (PMID: 1096611410.1016/S0092-8674(00)00057-X)
Yunus, A. A. & Lima, C. D. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Mol. Cell 35, 669–682 (2009). (PMID: 19748360277169010.1016/j.molcel.2009.07.013)
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021). (PMID: 34293799838724010.1038/s41586-021-03828-1)
Nascimento, R. M., Otto, P. A., de Brouwer, A. P. & Vianna-Morgante, A. M. UBE2A, which encodes a ubiquitin-conjugating enzyme, is mutated in a novel X-linked mental retardation syndrome. Am. J. Hum. Genet 79, 549–555 (2006). (PMID: 16909393155954410.1086/507047)
Tsurusaki, Y. et al. A novel UBE2A mutation causes X-linked intellectual disability type Nascimento. Hum. Genome Var. 4, 17019 (2017). (PMID: 28611923546293910.1038/hgv.2017.19)
Cordeddu, V. et al. Refinement of the clinical and mutational spectrum of UBE2A deficiency syndrome. Clin. Genet 98, 172–178 (2020). (PMID: 3241573510.1111/cge.13775)
de Oliveira, J. F. et al. Mechanistic insights revealed by a UBE2A mutation linked to intellectual disability. Nat. Chem. Biol. 15, 62–70 (2019). (PMID: 3053190710.1038/s41589-018-0177-2)
Budny, B. et al. Novel missense mutations in the ubiquitination-related gene UBE2A cause a recognizable X-linked mental retardation syndrome. Clin. Genet 77, 541–551 (2010). (PMID: 2041211110.1111/j.1399-0004.2010.01429.x)
Haddad, D. M. et al. Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy. Mol. Cell 50, 831–843 (2013). (PMID: 2368507310.1016/j.molcel.2013.04.012)
Hibbert, R. G., Huang, A., Boelens, R. & Sixma, T. K. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc. Natl Acad. Sci. USA 108, 5590–5595 (2011). (PMID: 21422291307839910.1073/pnas.1017516108)
Scott, D. C. et al. Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157, 1671–1684 (2014). (PMID: 24949976424779210.1016/j.cell.2014.04.037)
Saha, A., Lewis, S., Kleiger, G., Kuhlman, B. & Deshaies, R. J. Essential role for ubiquitin–ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 42, 75–83 (2011). (PMID: 21474069309188910.1016/j.molcel.2011.03.016)
Stewart, M. D. et al. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms. Protein Sci. 26, 475–483 (2017). (PMID: 27977889532655710.1002/pro.3091)
Dou, H., Buetow, L., Sibbet, G. J., Cameron, K. & Huang, D. T. Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Nat. Struct. Mol. Biol. 20, 982–986 (2013). (PMID: 23851457447110610.1038/nsmb.2621)
Wright, J. D., Mace, P. D. & Day, C. L. Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity. Nat. Struct. Mol. Biol. 23, 45–52 (2016). (PMID: 2665685410.1038/nsmb.3142)
Turco, E., Gallego, L. D., Schneider, M. & Kohler, A. Monoubiquitination of histone H2B is intrinsic to the Bre1 RING domain–Rad6 interaction and augmented by a second Rad6-binding site on Bre1. J. Biol. Chem. 290, 5298–5310 (2015). (PMID: 2554828810.1074/jbc.M114.626788)
Buetow, L. et al. Activation of a primed RING E3–E2–ubiquitin complex by non-covalent ubiquitin. Mol. Cell 58, 297–310 (2015). (PMID: 2580117010.1016/j.molcel.2015.02.017)
Shukla, P. K. et al. Structure and functional determinants of Rad6–Bre1 subunits in the histone H2B ubiquitin-conjugating complex. Nucleic Acids Res. 51, 2117–2136 (2023). (PMID: 367153221001834310.1093/nar/gkad012)
Ceccarelli, D. F. et al. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145, 1075–1087 (2011). (PMID: 2168343310.1016/j.cell.2011.05.039)
Morreale, F. E. et al. Allosteric targeting of the Fanconi anemia ubiquitin-conjugating enzyme Ube2T by fragment screening. J. Med. Chem. 60, 4093–4098 (2017). (PMID: 28437106544175310.1021/acs.jmedchem.7b00147)
Beilsten-Edmands, J. et al. Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling. Acta Crystallogr. D 76, 385–399 (2020). (PMID: 10.1107/S2059798320003198)
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019). (PMID: 10.1107/S2059798319011471)
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010). (PMID: 20383002285231310.1107/S0907444910007493)
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). (PMID: 1902991010.1038/nbt.1511)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; MC_UU_00018/7 United Kingdom MRC_ Medical Research Council; MC_UU_12016/8 United Kingdom MRC_ Medical Research Council
المشرفين على المادة: EC 2.3.2.27 (Ubiquitin-Protein Ligases)
EC 2.3.2.23 (Ubiquitin-Conjugating Enzymes)
0 (Ubiquitin)
EC 6.2.1.45 (Ubiquitin-Activating Enzymes)
EC 2.3.2.23 (UBE2A protein, human)
EC 2.3.2.23 (UBE2B protein, human)
EC 2.3.2.27 (UBR4 protein, human)
0 (Calmodulin-Binding Proteins)
تواريخ الأحداث: Date Created: 20240105 Date Completed: 20240219 Latest Revision: 20240320
رمز التحديث: 20240320
مُعرف محوري في PubMed: PMC10873205
DOI: 10.1038/s41594-023-01192-4
PMID: 38182926
قاعدة البيانات: MEDLINE
الوصف
تدمد:1545-9985
DOI:10.1038/s41594-023-01192-4