دورية أكاديمية

Structure, ultrastructure and cation accumulation in quinoa epidermal bladder cell complex under high saline stress.

التفاصيل البيبلوغرافية
العنوان: Structure, ultrastructure and cation accumulation in quinoa epidermal bladder cell complex under high saline stress.
المؤلفون: Palacios MB; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina., Rizzo AJ; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina., Heredia TB; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.; Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), San Juan, Argentina., Roqueiro G; Estación Experimental Agropecuaria San Juan, Instituto Nacional de Tecnología Agropecuaria (INTA), San Juan, Argentina., Maldonado S; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina., Murgida DH; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.; Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina., Burrieza HP; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. hernan@bg.fcen.uba.ar.; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. hernan@bg.fcen.uba.ar.
المصدر: Protoplasma [Protoplasma] 2024 Jul; Vol. 261 (4), pp. 655-669. Date of Electronic Publication: 2024 Jan 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Austria NLM ID: 9806853 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-6102 (Electronic) Linking ISSN: 0033183X NLM ISO Abbreviation: Protoplasma Subsets: MEDLINE
أسماء مطبوعة: Publication: <1998->: Wien ; New York : Springer
Original Publication: Leipzig : Verlag von Gebrüder Borntraeger, 1927-
مواضيع طبية MeSH: Chenopodium quinoa*/metabolism , Chenopodium quinoa*/chemistry , Plant Epidermis*/ultrastructure , Plant Epidermis*/cytology , Plant Epidermis*/metabolism, Salt Stress ; Cations ; Plant Leaves/ultrastructure ; Plant Leaves/metabolism ; Salinity
مستخلص: Quinoa is a facultative halophyte with excellent tolerance to salinity. In this study, the epidermal bladder cell complex (EBCc) of quinoa leaves was studied to determine their cellular characteristics and involvement in salt tolerance. We used light microscopy, confocal RAMAN microscopy, confocal fluorescence microscopy, transmission electron microscopy, and environmental scanning electron microscopy complemented by energy dispersive X-ray analysis. Ionic content was quantified with flame atomic absorption spectroscopy and with flame emission photometry. Results show that: (i) the number of EBCcs remains constant but their density and area vary with leaf age; (ii) stalk cells store lipids and exhibit thick walls, bladder cells present carotenes in small vesicles, oxalate crystals in vacuoles and lignin in their walls and both stalk and bladder cells have cuticles that differ in wax and cutin content; (iii) chloroplasts containing starch can be found on both stalk and bladder cells, and the latter also presents grana; (iv) plasmodesmata are observed between the stalk cell and the bladder cell, and between the epidermal cell and the stalk cell, and ectodesmata-like structures are observed on the bladder cell. Under high salinity conditions, (v) there is a clear tendency to accumulate greater amounts of K + with respect to Na + in the bladder cell; (vi) stalk cells accumulate similar amounts of K + and Na + ; (vii) Na + accumulates mainly in the medullary parenchyma of the stem. These results add knowledge about the structure, content, and role of EBCc under salt stress, and surprisingly present the parenchyma of the stem as the main area of Na + accumulation.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol 33(8):1215–1223.
Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138(2):171–190. (PMID: 10.1046/j.1469-8137.1998.00111.x33863085)
Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58(8):1957–1967. (PMID: 10.1093/jxb/erm05717452753)
Barkla BJ, Vera-Estrella R, Pantoja O (2012) Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Proteomics 12(18):2862–2865. (PMID: 10.1002/pmic.20120015222848050)
Bazihizina N, Böhm J, Messerer M, Stigloher C, Müller HM, Cuin TA, Maierhofer T, Cabot J, Mayer KFX, Fella C, Huang S, Al-Rasheid KAS, Alquraishi S, Breadmore M, Mancuso S, Shabala S, Ache P, Zhang H, Zhu JK, Hedrich R, Scherzer S (2022) Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa. New Phytol 235(5):1822–1835. (PMID: 10.1111/nph.1820535510810)
Bonales-Alatorre E, Pottosin I, Shabala L, Chen ZH, Zeng F, Jacobsen SE, Shabala S (2013a) Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. Int J Mol Sci 14(5):9267–9285.
Bonales-Alatorre E, Shabala S, Chen ZH, Pottosin I (2013b) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol 162(2):940–952. (PMID: 10.1104/pp.113.216572236248573668082)
Böhm J, Messerer M, Müller HM, Scholz-Starke J, Gradogna A, Scherzer S, Maierhofer T, Bazihizina N, Zhang H, Stigloher C, Ache P, Al-Rasheid KAS, Mayer KFX, Shabala S, Carpaneto A, Haberer G, Zhu JK, Hedrich R (2018) Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. Curr Biol 28(19):3075–3085. (PMID: 10.1016/j.cub.2018.08.00430245105)
Brizuela M, Montenegro T, Carjuzaa P, Maldonado S (2007) Insolubilization of potassium chloride crystals in Tradescantia pallida. Protoplasma 231(3–4):145–149. (PMID: 10.1007/s00709-007-0258-717762907)
Eisa S, Hussin S, Geissler N, Koyro HW (2012) Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa (‘Chenopodium quinoa’Willd.) as a potential cash crop halophyte. Aust J Crop Sci 6(2):357–368.
Eller CB, Lima AL, Oliveira RS (2013) Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol 199(1):151–162. (PMID: 10.1111/nph.1224823534879)
Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley. (PMID: 10.1002/0470047380)
Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963. (PMID: 10.1111/j.1469-8137.2008.02531.x18565144)
Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37(7):604–612. (PMID: 10.1071/FP09269)
Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62(1):185–193. (PMID: 10.1093/jxb/erq25720732880)
Hawes C (1994) Electron microscopy. Plant cell biology. A practical approach. The Practical Approach Series. Oxford: IRL Press at Oxford University Press.
Hoang BTL, Fletcher SJ, Brosnan CA, Ghodke AB, Manzie N, Mitter N (2022) RNAi as a foliar spray: efficiency and challenges to field applications. Int J Mol Sci 23(12):6639. (PMID: 10.3390/ijms23126639357430779224206)
Jeschke WD, Stelter W (1983) Ionic relations of garden orache, Atriplex hortensis L.: growth and ion distribution at moderate salinity and the function of bladder hairs. J Exp Bot 34(7):795–810. (PMID: 10.1093/jxb/34.7.795)
Jou Y, Wang YL, Yen HE (2007) Vacuolar acidity, protein profile, and crystal composition of epidermal bladder cells of the halophyte Mesembryanthemum crystallinum. Funct Plant Biol 34(4):353–359. (PMID: 10.1071/FP0626932689362)
Kiani-Pouya A, Roessner U, Jayasinghe NS, Lutz A, Rupasinghe T, Bazihizina N, Bohm J, Alharbi S, Hendrich R, Shabala S (2017) Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant Cell Environ 40(9):1900–1915. (PMID: 10.1111/pce.1299528558173)
Kramer D (1979) Ultrastructural observations on developing leaf bladder cells of Mesembryanthemum crystallinum L. Flora 168(1–2):193–204. (PMID: 10.1016/S0367-2530(17)31904-7)
LoPresti EF (2014) Chenopod salt bladders deter insect herbivores. Oecologia 174(3):921–930. (PMID: 10.1007/s00442-013-2827-024241642)
Lüttge U (1971) Structure and function of plant glands. Annu Rev Plant Physiol 22(1):23–44. (PMID: 10.1146/annurev.pp.22.060171.000323)
Lüttge U, Fischer E, Steudle E (1978) Membrane potentials and salt distribution in epidermal bladders and photosynthetic tissue of Mesembryanthemum crystallinum L. Plant Cell Environ 1(2):121–129. (PMID: 10.1111/j.1365-3040.1978.tb00753.x)
Moog MW, Trinh MDL, Nørrevang AF, Bendtsen AK, Wang C, Østerberg JT, Shabala S, Hedrich R, Wendt T, Palmgren M (2022) The epidermal bladder cell-free mutant of the salt-tolerant quinoa challenges our understanding of halophyte crop salinity tolerance. New Phytol 236(4):1409–1421. (PMID: 10.1111/nph.18420359279499804403)
Moog MW, Yang X, Bendtsen AK, Dong L, Crocoll C, Imamura T, Mori M, Cushman JC, Kant MR, Palmgren M (2023) Epidermal bladder cells as a herbivore defense mechanism. Curr Biol 33(21):4662–4673. (PMID: 10.1016/j.cub.2023.09.06337852262)
Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Carrasco KBR, Martinez EA, Alnayef M, Marotti I, Bosi S, Biondi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38(10):818. (PMID: 10.1071/FP1108832480939)
Otterbach S, Khoury H, Rupasinghe T, Mendis H, Kwan K, Lui V, Natera S, Klaiber I, Allen N, Jarvis D, Tester M, Roessner U, Schmöckel S (2021) Characterization of epidermal bladder cells in Chenopodium quinoa. Plant Cell Environ 44(12):3836–3852. (PMID: 10.1111/pce.14181)
Prego I, Maldonado S, Otegui M (1998) Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82(4):481–488. (PMID: 10.1006/anbo.1998.0704)
Reimann C, Breckle SW (1988) Salt secretion in some Chenopodium species. Flora 180(3–4):289–296. (PMID: 10.1016/S0367-2530(17)30324-9)
Roman VJ, den Toom LA, Gamiz CC, van der Pijl N, Visser RG, van Loo EN, van der Linden CG (2020) Differential responses to salt stress in ion dynamics, growth and seed yield of European quinoa varieties. Environ Exp Bot 177:104146. (PMID: 10.1016/j.envexpbot.2020.104146)
Rubio F, Nieves-Cordones M, Horie T, Shabala S (2020) Doing ‘business as usual’comes with a cost: evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions. New Phytol 225(3):1097–1104. (PMID: 10.1111/nph.1585230993727)
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. (PMID: 10.1038/nmeth.201922743772)
Schönherr J, Bukovac MJ (1970) Preferential polar pathways in the cuticle and their relationship to ectodesmata. Planta 92(3):189–201. (PMID: 10.1007/BF0038855324500250)
Shabala S, Mackay A (2011) Ion transport in halophytes. In Advances in botanical research (Vol. 57, pp. 151–199). Academic Press.
Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19(11):687–691. (PMID: 10.1016/j.tplants.2014.09.00125361704)
Sosa-Zuniga V, Brito V, Fuentes F, Steinfort U (2017) Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann Appl Biol 171(1):117–124. (PMID: 10.1111/aab.12358)
Sun Y, Lindberg S, Shabala L, Morgan S, Shabala S, Jacobsen SE (2017) A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum). Environ Exp Bot 141:154–160. (PMID: 10.1016/j.envexpbot.2017.07.003)
Turcios AE, Papenbrock J, Tränkner M (2021) Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions. J Agron Crop Sci 207(4):618–630. (PMID: 10.1111/jac.12477)
Van Amstel ANM (1996) A relationship between callose and ectodesmata in epidermal cells of Allium cepa L. Plant Cell Rep 15(9):707–711. (PMID: 10.1007/BF0023193024178616)
Waigmann E, Zambryski P (2000) Trichome plasmodesmata: a model system for cell-to-cell movement. Adv Bot Res 31:261–283. (PMID: 10.1016/S0065-2296(00)31014-X)
Zhang Y, Mutailifu A, Lan H (2022) Structure, development, and the salt response of salt bladders in Chenopodium album L. Front Plant Sci 13:989946. (PMID: 10.3389/fpls.2022.989946361610279493005)
معلومات مُعتمدة: 20020170200265BA Secretaria de Ciencia y Tecnica, Universidad de Buenos Aires
فهرسة مساهمة: Keywords: Chenopodium quinoa; Epidermal bladder cell complex; Potassium; Salt stress; Sodium; Structural biology
المشرفين على المادة: 0 (Cations)
تواريخ الأحداث: Date Created: 20240113 Date Completed: 20240624 Latest Revision: 20240624
رمز التحديث: 20240624
DOI: 10.1007/s00709-023-01922-x
PMID: 38217740
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-6102
DOI:10.1007/s00709-023-01922-x