دورية أكاديمية

Comparative assessment of emulsifiers for in vitro ruminal gas production and fermentation measurements: Tween 80 is a suitable emulsifier.

التفاصيل البيبلوغرافية
العنوان: Comparative assessment of emulsifiers for in vitro ruminal gas production and fermentation measurements: Tween 80 is a suitable emulsifier.
المؤلفون: Sun X; Department of Environmental Systems Science, ETH Zürich, Institute of Agricultural Sciences, Zürich, Switzerland., Li Y; Department of Environmental Systems Science, ETH Zürich, Institute of Agricultural Sciences, Zürich, Switzerland., Giller K; Department of Environmental Systems Science, ETH Zürich, Institute of Agricultural Sciences, Zürich, Switzerland., Kunz C; Department of Environmental Systems Science, ETH Zürich, Institute of Agricultural Sciences, Zürich, Switzerland., Terranova M; AgroVet-Strickhof, ETH Zürich, Lindau, Switzerland., Niu M; Department of Environmental Systems Science, ETH Zürich, Institute of Agricultural Sciences, Zürich, Switzerland.
المصدر: Journal of animal physiology and animal nutrition [J Anim Physiol Anim Nutr (Berl)] 2024 May; Vol. 108 (3), pp. 680-690. Date of Electronic Publication: 2024 Jan 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Country of Publication: Germany NLM ID: 101126979 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-0396 (Electronic) Linking ISSN: 09312439 NLM ISO Abbreviation: J Anim Physiol Anim Nutr (Berl) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Berlin] : Blackwell Science, c2001-
مواضيع طبية MeSH: Rumen*/metabolism , Fermentation* , Polysorbates*/pharmacology , Polysorbates*/chemistry , Emulsifying Agents*/chemistry , Emulsifying Agents*/pharmacology, Animals ; Cattle ; Female ; Animal Feed/analysis
مستخلص: Emulsifiers are essential for achieving a homogenous distribution of lipophilic supplements in in vitro rumen fluid incubations. Since emulsifiers can alter rumen fermentation, it is crucial to select one that minimally impacts fermentation parameters to reduce potential biases. This study aimed to evaluate seven emulsifiers' impact on in vitro ruminal fermentation using the Hohenheim Gas Test in order to identify the most inert emulsifier. Rumen fluids were collected from three non-lactating Original Brown-Swiss cannulated cows before morning feeding and incubated for 24 h with a basal diet in triplicates. The emulsifiers tested were ethanol, ethyl acetate, propylene glycol, glycerol, ethylene glycol, soy lecithin, and Tween® 80, each in two dosages (0.5% or 1% v/v). The untreated basal diet served as control. Compared to control, in vitro organic matter digestibility was enhanced by ethyl acetate (by 36.9 and 48.2%), ethylene glycol (by 20.6 and 20.1%), glycerol (by 46.9 and 56.8%) and soy lecithin (by 19.7 and 26.8%) at 0.5 and 1% dosage, respectively. Additionally, the 24-h methane production increased for ethanol (by 41.9 and 46.2%), ethylene glycol (by 50.5 and 51.5%), and glycerol (by 63.1 and 65.4%) for the 0.5 and 1% dosage, respectively, and 0.5% dosage for ethyl acetate (by 31.6%). The acetate molar proportion was 17.2%pt higher for ethyl acetate, and 25.5%pt lower for glycerol at 1% dosage, compared to the control. The propionate concentration was 22.1%pt higher 1% glycerol, and 15.2%pt and 15.1%pt higher for 0.5 and 1% propylene glycol, respectively, compared to the control. In summary, Tween® 80 did not significantly affect in vitro rumen fermentation parameters, making it the most suitable choice for in vitro incubations involving lipophilic substances in rumen fluid. Ethanol may be considered as an alternative emulsifier if methane production is not the variable of interest.
(© 2024 The Authors. Journal of Animal Physiology and Animal Nutrition published by Wiley‐VCH GmbH.)
References: Agtarap, A., & Chamberlin, J. W. (1967). Monensin, a new biologically active compound. IV. Antimicrobial Agents and Chemotherapy, 7, 359–362. https://www.ncbi.nlm.nih.gov/pubmed/5596160.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.
Bauman, D. E., Davis, C. L., Frobish, R. A., & Sachan, D. S. (1971). Evaluation of polyethylene glycol method in determining rumen fluid volume in dairy cows fed different diets. Journal of Dairy Science, 54(6), 928–930. https://doi.org/10.3168/jds.S0022-0302(71)85947-7.
Bryant, M. P., & Robinson, I. M. (1963). Apparent incorporation of ammonia and amino acid carbon during growth of selected species of ruminal bacteria. Journal of Dairy Science, 46(2), 150–154. https://doi.org/10.3168/jds.S0022-0302(63)88991-2.
Buetow, D. E., & Padilla, G. M. (1963). Growth of Astasia longaon Ethanol. I. Effects of ethanol on generation time, population density and biochemical profile. The Journal of Protozoology, 10(1), 121–123. https://doi.org/10.1111/j.1550-7408.1963.tb01646.x.
Callaway, T. R., & Melo, A. M. S. C. D. (1997). The effect of nisin and monensin on ruminal fermentations in vitro. Current Microbiology, 35(2), 90–96. https://doi.org/10.1007/s002849900218.
Chen, G. J., Zhang, R., Wu, J. H., Shang, Y. S., Li, X. D., Qiong, M., Wang, P. C., Li, S. G., Gao, Y. H., & Xiong, X. Q. (2020). Effects of soybean lecithin supplementation on growth performance, serum metabolites, ruminal fermentation and microbial flora of beef steers. Livestock Science, 240, 104121. https://doi.org/10.1016/j.livsci.2020.104121.
Chow, J. C., & Jesse, B. W. (1992). Interactions between gluconeogenesis and fatty‐acid oxidation in isolated sheep hepatocytes. Journal of Dairy Science, 75(8), 2142–2148. https://doi.org/10.3168/jds.S0022-0302(92)77974-0.
Cobellis, G., Trabalza‐Marinucci, M., & Yu, Z. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of the Total Environment, 545‐546, 556–568. https://doi.org/10.1016/j.scitotenv.2015.12.103.
Czerkawski, J. W., & Breckenridge, G. (1972). Fermentation of various glycolytic intermediates and other compounds by rumen microorganisms, with particular reference to methane production. British Journal of Nutrition, 27(1), 131–146. https://doi.org/10.1079/Bjn19720077.
DeFrain, J. M., Hippen, A. R., Kalscheur, K. F., & Jardon, P. W. (2004). Feeding glycerol to transition dairy cows: Effects on blood metabolites and lactation performance. Journal of Dairy Science, 87(12), 4195–4206. https://doi.org/10.3168/jds.S0022-0302(04)73564-X.
Duncan, S. H., Doherty, C. J., Govan, J. R. W., Neogrady, S., Galfi, P., & Stewart, C. S. (1999). Characteristics of sheep‐rumen isolates of Pseudomonas aeruginosa inhibitory to the growth of Escherichia coli O157. FEMS Microbiology Letters, 180(2), 305–310. https://doi.org/10.1016/S0378-1097(99)00493-0.
Ehrlich, G. G., Goerlitz, D. F., Bourell, J. H., Eisen, G. V., & Godsy, E. M. (1981). Liquid chromatographic procedure for fermentation product analysis in the identification of anaerobic bacteria. Applied and Environmental Microbiology, 42(5), 878–885. https://doi.org/10.1128/aem.42.5.878-885.1981.
Elahi, M. Y., Nia, M. M., Salem, A. Z. M., Mansouri, H., Olivares‐Pérez, J., Cerrillo‐Soto, M. A., & Kholif, A. E. (2014). Effect of polyethylene glycol on in vitro gas production kinetics of Prosopis cineraria leaves at different growth stages. Italian Journal of Animal Science, 13(2), 3175. https://doi.org/10.4081/ijas.2014.3175.
Emery, R. S., Lewis, T. R., Everett, J. P., & Lassiter, C. A. (1959). Effect of ethanol on rumen fermentation. Journal of Dairy Science, 42(7), 1182–1186. https://doi.org/10.3168/jds.S0022-0302(59)90710-6.
Ferraro, S. M., Mendoza, G. D., Miranda, L. A., & Gutiérrez, C. G. (2009). In vitro gas production and ruminal fermentation of glycerol, propylene glycol and molasses. Animal Feed Science and Technology, 154(1–2), 112–118. https://doi.org/10.1016/j.anifeedsci.2009.07.009.
Garrido, A., Gómez‐Cabrera, A., Guerrero, J. E., & Vandermeer, J. M. (1991). Effects of treatment with polyvinylpyrrolidone and polyethylene‐glycol on faba bean tannins. Animal Feed Science and Technology, 35(3–4), 199–203. https://doi.org/10.1016/0377-8401(91)90126-D.
Gaspardo, B., Procida, G., Volarič, S., Sgorlon, S., & Stefanon, B. (2009). Determination of volatile fractions in raw milk and ripened cheese by means of GC‐MS. Results of a survey performed in the marginal area between Italy and Slovenia. Italian Journal of Animal Science, 8(3), 377–390. https://doi.org/10.4081/ijas.2009.377.
Goto, M., Bae, H., Lee, S. S., Yahaya, M. S., Karita, S., Wanjae, K., & Cheng, K. J. (2003). Effects of surfactant Tween 80 on forage degradability and microbial growth on the in vitro rumen mixed and pure cultures. Asian‐Australasian Journal of Animal Sciences, 16(5), 672–676. https://doi.org/10.5713/ajas.2003.672.
Guyader, J., Eugène, M., Nozière, P., Morgavi, D. P., Doreau, M., & Martin, C. (2014). Influence of rumen protozoa on methane emission in ruminants: A meta‐analysis approach. Animal, 8(11), 1816–1825.
Harfoot, C. G., Noble, R. C., & Moore, J. H. (1973). Factors influencing the extent of biohydrogenation of linoleic acid by rumen micro‐organisms in vitro. Journal of the Science of Food and Agriculture, 24(8), 961–970. https://doi.org/10.1002/jsfa.2740240814.
Hasona, A., York, S. W., Yomano, L. P., Ingram, L. O., & Shanmugam, K. T. (2002). Decreasing the level of ethyl acetate in ethanolic fermentation broths of Escherichia coli KO11 by expression of Pseudomonas putida estZ esterase. Applied and Environmental Microbiology, 68(6), 2651–2659. https://doi.org/10.1128/Aem.68.6.2651-2659.2002.
Hegarty, R. S. (1999). Reducing rumen methane emissions through elimination of rumen protozoa. Australian Journal of Agricultural Research, 50(8), 1321–1327. https://doi.org/10.1071/Ar99008.
Hino, T., & Kuroda, S. (1993). Presence of lactate dehydrogenase and lactate racemase in Megasphaera‐Elsdenii grown on glucose or lactate. Applied and Environmental Microbiology, 59(1), 255–259. https://doi.org/10.1128/Aem.59.1.255-259.1993.
Hobson, P. N., & Mann, S. O. (1961). The isolation of glycerol‐fermenting and lipolytic bacteria from the rumen of the sheep. Journal of General Microbiology, 25, 227–240. https://doi.org/10.1099/00221287-25-2-227.
Hoedt, E. C., Cuív, P. Ó., Evans, P. N., Smith, W. J. M., McSweeney, C. S., Denman, S. E., & Morrison, M. (2016). Differences down‐under: Alcohol‐fueled methanogenesis by archaea present in Australian macropodids. The ISME journal, 10(10), 2376–2388. https://doi.org/10.1038/ismej.2016.41.
Jarvis, G. N., Moore, E. R. B., & Thiele, J. H. (1997). Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. Journal of Applied Microbiology, 83(2), 166–174. https://doi.org/10.1046/j.1365-2672.1997.00217.x.
Jayanegara, A., Makkar, H. P. S., & Becker, K. (2015). Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in vitro. Media Peternakan, 38(1), 57–63.
Jenkins, T. C., & Fotouhi, N. (1990). Effects of lecithin and corn‐oil on site of digestion, ruminal fermentation and microbial protein‐synthesis in sheep. Journal of Animal Science, 68(2), 460–466. https://doi.org/10.2527/1990.682460x.
Kamande, G. M., Baah, J., Cheng, K. J., McAllister, T. A., & Shelford, J. A. (2000). Effects of Tween 60 and Tween 80 on protease activity, thiol group reactivity, protein adsorption, and cellulose degradation by rumen microbial enzymes. Journal of Dairy Science, 83(3), 536–542. https://doi.org/10.3168/jds.S0022-0302(00)74913-7.
Kamel, B. (1991). Emulsifiers. In J. Smith (Ed.), Food additive user's handbook. Springer publishing.
Kijora, C., Bergner, H., Götz, K. P., Bartelt, J., Szakács, J., & Sommer, A. (1998). Research note: Investigation on the metabolism of glycerol in the rumen of bulls. Archiv für Tierernaehrung, 51(4), 341–348. https://doi.org/10.1080/17450399809381931.
Kralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: A review. Journal of Dispersion Science and Technology, 30(9), 1363–1383. https://doi.org/10.1080/01932690902735561.
Kristensen, N. B., Storm, A., Raun, B. M. L., Røjen, B. A., & Harmon, D. L. (2007). Metabolism of silage alcohols in lactating dairy cows. Journal of Dairy Science, 90(3), 1364–1377. https://doi.org/10.3168/jds.S0022-0302(07)71623-5.
Lee, S. S., & Ha, J. K. (2003). Influences of surfactant Tween 80 on the gas production, cellulose digestion and enzyme activities by mixed rumen microorganisms. Asian‐Australasian Journal of Animal Sciences, 16(8), 1151–1157. https://doi.org/10.5713/ajas.2003.1151.
Long, K., & Knapp, J. S. (1991). The effect of Junlon Pw110 and Tween 80 on the production of cellulolytic enzymes by Coprinus‐cinereus. Mycological Research, 95, 1077–1081. https://doi.org/10.1016/S0953-7562(09)80550-9.
Mamlouk, D., & Gullo, M. (2013). Acetic acid bacteria: Physiology and carbon sources oxidation. Indian Journal of Microbiology, 53(4), 377–384. https://doi.org/10.1007/s12088-013-0414-z.
Mbiriri, D. T., Cho, S., Mamvura, C. I., & Choi, N. J. (2015). Assessment of rumen microbial adaptation to garlic oil, carvacrol and thymol using the consecutive batch culture system. Journal of Veterinary Science and Animal Husbandry, 4, 1–7. https://doi.org/10.15744/2348-9790.4.101.
Menke, K. H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7–55.
Miclotte, L., De Paepe, K., Rymenans, L., Callewaert, C., Raes, J., Rajkovic, A., Van Camp, J., & van de Wiele, T. (2020). Dietary emulsifiers alter composition and activity of the human gut microbiota in vitro, irrespective of chemical or natural emulsifier origin. Frontiers in Microbiology, 11, 577474. https://doi.org/10.3389/fmicb.2020.577474.
Norn, V. (2014). Emulsifiers in food technology (2nd ed.). John Wiley & Sons Inc.
Oh, H. K., Sakai, T., Jones, M. B., & Longhurst, W. M. (1967). Effect of various essential oils isolated from Douglas fir needles upon sheep and deer rumen microbial activity. Applied Microbiology, 15(4), 777–784. https://doi.org/10.1128/Aem.15.4.777-784.1967.
Pradhan, K., & Hemken, R. W. (1970). Utilization of ethanol and its effect on fatty acid patterns in ruminants. Journal of Dairy Science, 53(12), 1739–1746. https://doi.org/10.3168/jds.S0022-0302(70)86472-4.
Prom, C. M., dos Santos Neto, J. M., & Lock, A. L. (2022). Abomasal infusion of different exogenous emulsifiers alters fatty acid digestibility and milk fat yield of lactating dairy cows. Journal of Dairy Science, 105(4), 3102–3112. https://doi.org/10.3168/jds.2021-21315.
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Rémond, B., Souday, E., & Jouany, J. P. (1993). In vitro and in vivo fermentation of glycerol by rumen microbes. Animal Feed Science and Technology, 41(2), 121–132.
Rukkwamsuk, T., Rungruang, S., Choothesa, A., & Wensing, T. (2005). Effect of propylene glycol on fatty liver development and hepatic fructose 1,6 bisphosphatase activity in periparturient dairy cows. Livestock Production Science, 95(1–2), 95–102. https://doi.org/10.1016/j.livprodsci.2004.12.006.
Rydhag, L., & Wilton, I. (1981). The function of phospholipids of soybean lecithin in emulsions. Journal of the American Oil Chemists' Society, 58(8), 830–837. https://doi.org/10.1007/Bf02665591.
Ben Salem, H., Ben Salem, I., & Ben Saı̈d, M. S. (2005). Effect of the level and frequency of PEG supply on intake, digestion, biochemical and clinical parameters by goats given kermes oak (Quercus coccifera L.)‐based diets. Small Ruminant Research, 56(1–3), 127–137. https://doi.org/10.1016/j.smallrumres.2004.03.005.
Soliva, C. R., & Hess, H. D. (2007). Measuring methane emission of ruminants by in vitro and in vivo techniques. In H. P. Makkar & P. E. Vercoe (Eds.), Measuring methane production from ruminants. Springer Publishing.
Thiex, N., Novotny, L., & Crawford, A. (2012). Determination of Ash in Animal Feed: AOAC Official Method 942.05 Revisited. Journal of AOAC INTERNATIONAL, 95(5), 1392–1397. https://doi.org/10.5740/jaoacint.12-129.
Trabue, S., Scoggin, K., Tjandrakusuma, S., Rasmussen, M. A., & Reilly, P. J. (2007). Ruminal fermentation of propylene glycol and glycerol. Journal of Agricultural and Food Chemistry, 55(17), 7043–7051. https://doi.org/10.1021/jf071076i.
Trifunović, D., Schuchmann, K., & Müller, V. (2016). Ethylene glycol metabolism in the acetogen Acetobacterium woodii. Journal of Bacteriology, 198(7), 1058–1065. https://doi.org/10.1128/Jb.00942-15.
Ungerfeld, E. M. (2020). Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Frontiers in Microbiology, 11, 589. https://doi.org/10.3389/fmicb.2020.00589.
Veltman, S., Schoenberg, T., & Switzenbaum, M. S. (1998). Alcohol and acid formation during the anaerobic decomposition of propylene glycol under methanogenic conditions. Biodegradation, 9(2), 113–118. https://doi.org/10.1023/a:1008352502493.
Wanapat, M., Kang, S., & Polyorach, S. (2013). Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. Journal of Animal Science and Biotechnology, 4(1), 32. https://doi.org/10.1186/2049-1891-4-32.
Wang, Y., McAllister, T. A., Baah, J., Wilde, R., Beauchemin, K. A., Rode, L. M., Shelford, J. A., Kamande, G. M., & Cheng, K. J. (2003). Effects of Tween 80 on in vitro fermentation of silages and interactive effects of Tween 80, monensin and exogenous fibrolytic enzymes on growth performance by feedlot cattle. Asian‐Australasian Journal of Animal Sciences, 16(7), 968–978. https://doi.org/10.5713/ajas.2003.968.
Wei, C., Guyader, J., Collazos, L., Beauchemin, K. A., & Zhao, G. Y. (2019). Effects of gallic acid on in vitro rumen fermentation and methane production using rumen simulation (Rusitec) and batch‐culture techniques. Animal Production Science, 59(2), 277–287. https://doi.org/10.1071/An17365.
Wettstein, H.‐R. (2000). Influence of plant lecithins on rumen fermentation, lipid digestion and quality of milk and body fat in cattle. ETH Zurich, Zurich, Switzerland.
Yazdi, M. T., Woodward, J. R., & Radford, A. (1990). The cellulase complex of Neurospora‐crassa—Activity, stability and release. Journal of General Microbiology, 136, 1313–1319. https://doi.org/10.1099/00221287-136-7-1313.
Yisehak, K., De Boever, J. L., & Janssens, G. P. J. (2014). The effect of supplementing leaves of four tannin‐rich plant species with polyethylene glycol on digestibility and zootechnical performance of zebu bulls (Bos indicus). Journal of Animal Physiology and Animal Nutrition, 98(3), 417–423. https://doi.org/10.1111/jpn.12068.
Yoshii, T., Asanuma, N., & Hino, T. (2005). Effect of ethanol on nitrate and nitrite reduction and methanogenesis in the ruminal microbiota. Animal Science Journal, 76(1), 37–42. https://doi.org/10.1111/j.1740-0929.2005.00235.x.
Zou, C., Gu, Q., Zhou, X., Xia, z, Muhammad, W. I., Tang, Q., Liang, M., Lin, B., & Qin, G. (2019). Ruminal microbiota composition associated with ruminal fermentation parameters and milk yield in lactating buffalo in Guangxi, China‐A preliminary study. Journal of Animal Physiology and Animal Nutrition, 103(5), 1374–1379. https://doi.org/10.1111/jpn.13154.
معلومات مُعتمدة: The study was funded by ETH Zurich.
فهرسة مساهمة: Keywords: gas production; lipophilic substances; organic solvent; rumen fermentation
المشرفين على المادة: 0 (Polysorbates)
0 (Emulsifying Agents)
تواريخ الأحداث: Date Created: 20240115 Date Completed: 20240507 Latest Revision: 20240507
رمز التحديث: 20240507
DOI: 10.1111/jpn.13924
PMID: 38223976
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-0396
DOI:10.1111/jpn.13924