دورية أكاديمية

Enhancing diagnostic precision for acute chest syndrome in sickle cell disease: insights from dual-energy CT lung perfusion mapping.

التفاصيل البيبلوغرافية
العنوان: Enhancing diagnostic precision for acute chest syndrome in sickle cell disease: insights from dual-energy CT lung perfusion mapping.
المؤلفون: Chamberlin JH; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., Ogbonna A; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., Abrol S; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., Maisuria D; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., Miller E; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., McGuire A; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., Knight H; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., O'Doherty J; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA.; Siemens Medical Solutions, Malvern, PA, USA., Baruah D; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., Schoepf UJ; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., Munden RF; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA., Kabakus IM; Department of Radiology and Radiologic Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC, USA. kabakus@musc.edu.
المصدر: Emergency radiology [Emerg Radiol] 2024 Feb; Vol. 31 (1), pp. 73-82. Date of Electronic Publication: 2024 Jan 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag New York Inc Country of Publication: United States NLM ID: 9431227 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1438-1435 (Electronic) Linking ISSN: 10703004 NLM ISO Abbreviation: Emerg Radiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Springer-Verlag New York Inc
Original Publication: Baltimore, MD. : Williams & Wilkins, c1994-
مواضيع طبية MeSH: Acute Chest Syndrome*/diagnostic imaging , Pulmonary Embolism*/diagnostic imaging , Anemia, Sickle Cell*/complications , Anemia, Sickle Cell*/diagnostic imaging , Iodine*, Humans ; Retrospective Studies ; Angiography/methods ; Reproducibility of Results ; Tomography, X-Ray Computed/methods ; Lung ; Perfusion
مستخلص: Purpose: Acute chest syndrome (ACS) is secondary to occlusion of the pulmonary vasculature and a potentially life-threatening complication of sickle cell disease (SCD). Dual-energy CT (DECT) iodine perfusion map reconstructions can provide a method to visualize and quantify the extent of pulmonary microthrombi.
Methods: A total of 102 patients with sickle cell disease who underwent DECT CTPA with perfusion were retrospectively identified. The presence or absence of airspace opacities, segmental perfusion defects, and acute or chronic pulmonary emboli was noted. The number of segmental perfusion defects between patients with and without acute chest syndrome was compared. Sub-analyses were performed to investigate robustness.
Results: Of the 102 patients, 68 were clinically determined to not have ACS and 34 were determined to have ACS by clinical criteria. Of the patients with ACS, 82.4% were found to have perfusion defects with a median of 2 perfusion defects per patient. The presence of any or new perfusion defects was significantly associated with the diagnosis of ACS (P = 0.005 and < 0.001, respectively). Excluding patients with pulmonary embolism, 79% of patients with ACS had old or new perfusion defects, and the specificity for new perfusion defects was 87%, higher than consolidation/ground glass opacities (80%).
Conclusion: DECT iodine map has the capability to depict microthrombi as perfusion defects. The presence of segmental perfusion defects on dual-energy CT maps was found to be associated with ACS with potential for improved specificity and reclassification.
(© 2024. The Author(s), under exclusive licence to American Society of Emergency Radiology (ASER).)
References: Fitzsimmons R, Amin N, Uversky VN (2016) Understanding the roles of intrinsic disorder in subunits of hemoglobin and the disease process of sickle cell anemia. Intrinsically Disord Proteins 4(1):e1248273. https://doi.org/10.1080/21690707.2016.1248273. (PMID: 10.1080/21690707.2016.1248273282328985314875)
Sachdev V, Rosing DR, Thein SL (2021) Cardiovascular complications of sickle cell disease. Trends Cardiovasc Med 31(3):187–193. https://doi.org/10.1016/j.tcm.2020.02.002. (PMID: 10.1016/j.tcm.2020.02.00232139143)
Sundd P, Gladwin MT, Novelli EM (2019) Pathophysiology of sickle cell disease. Annu Rev Pathol 14:263–292. https://doi.org/10.1146/annurev-pathmechdis-012418-012838. (PMID: 10.1146/annurev-pathmechdis-012418-01283830332562)
Gladwin MT, Vichinsky E (2008) Pulmonary complications of sickle cell disease. N Engl J Med 359(21):2254–2265. https://doi.org/10.1056/NEJMra0804411. (PMID: 10.1056/NEJMra080441119020327)
MekontsoDessap A et al (2011) Pulmonary artery thrombosis during acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med 184(9):1022–9. https://doi.org/10.1164/rccm.201105-0783OC. (PMID: 10.1164/rccm.201105-0783OC)
Stein PD, Beemath A, Meyers FA, Skaf E, Olson RE (2006) Deep venous thrombosis and pulmonary embolism in hospitalized patients with sickle cell disease. Am J Med 119(10):897.e7–11. https://doi.org/10.1016/j.amjmed.2006.08.015. (PMID: 10.1016/j.amjmed.2006.08.01517000225)
Adedeji MO, Cespedes J, Allen K, Subramony C, Hughson MD (2001) Pulmonary thrombotic arteriopathy in patients with sickle cell disease. Arch Pathol Lab Med 125(11):1436–1441. https://doi.org/10.5858/2001-125-1436-PTAIPW. (PMID: 10.5858/2001-125-1436-PTAIPW11697998)
Hassan A, Taleb M, Hasan W, Shehab F, Maki R, Alhamar N (2023) Positive rate and quality assessment of CT pulmonary angiography in sickle cell disease: a case-control study. Emerg Radiol 30(2):209–216. https://doi.org/10.1007/s10140-023-02126-9. (PMID: 10.1007/s10140-023-02126-93694734710031195)
McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653. https://doi.org/10.1148/radiol.2015142631. (PMID: 10.1148/radiol.201514263126302388)
Vlahos I, Jacobsen MC, Godoy MC, Stefanidis K, Layman RR (2022) Dual-energy CT in pulmonary vascular disease. Br J Radiol 95(1129):20210699. https://doi.org/10.1259/bjr.20210699. (PMID: 10.1259/bjr.2021069934538091)
Bhalla M et al (1993) Acute chest syndrome in sickle cell disease: CT evidence of microvascular occlusion. Radiology 187(1):45–49. https://doi.org/10.1148/radiology.187.1.8451435. (PMID: 10.1148/radiology.187.1.84514358451435)
Tivnan P, Billett HH, Freeman LM, Haramati LB (2018) Imaging for pulmonary embolism in sickle cell disease: a 17-year experience. J Nucl Med 59(8):1255–1259. https://doi.org/10.2967/jnumed.117.205641. (PMID: 10.2967/jnumed.117.20564129419477)
Dako F, Hossain R, Jeudy J, White C (2021) Dual-energy CT evidence of pulmonary microvascular occlusion in patients with sickle cell disease experiencing acute chest syndrome. Clin Imaging 78:94–97. https://doi.org/10.1016/j.clinimag.2021.03.018. (PMID: 10.1016/j.clinimag.2021.03.01833773449)
Ballas SK et al (2010) Definitions of the phenotypic manifestations of sickle cell disease. Am J Hematol 85(1):6–13. https://doi.org/10.1002/ajh.21550. (PMID: 10.1002/ajh.21550199025235046828)
Vichinsky EP et al (2000) Causes and outcomes of the acute chest syndrome in sickle cell disease. National Acute Chest Syndrome Study Group. N Engl J Med 342(25):1855–1865. https://doi.org/10.1056/NEJM200006223422502. (PMID: 10.1056/NEJM20000622342250210861320)
Gilyard SN, Hamlin SL, Johnson JO, Herr KD (2021) Imaging review of sickle cell disease for the emergency radiologist. Emerg Radiol 28(1):153–164. https://doi.org/10.1007/s10140-020-01828-8. (PMID: 10.1007/s10140-020-01828-832734483)
Thieme SF, Johnson TR, Reiser MF, Nikolaou K (2010) Dual-energy lung perfusion computed tomography: a novel pulmonary functional imaging method. Semin Ultrasound CT MR 31(4):301–308. https://doi.org/10.1053/j.sult.2010.05.001. (PMID: 10.1053/j.sult.2010.05.00120691930)
Gertz RJ et al (2023) Dual-layer dual-energy CT-derived pulmonary perfusion for the differentiation of acute pulmonary embolism and chronic thromboembolic pulmonary hypertension. Eur Radiol. https://doi.org/10.1007/s00330-023-10337-4.
Foldyna B et al (2023) Pulmonary perfusion defect volume on dual-energy CT: prognostic marker of adverse events in patients with suspected pulmonary embolism. Int J Cardiovasc Imaging 39(7):1333–1341. https://doi.org/10.1007/s10554-023-02836-8. (PMID: 10.1007/s10554-023-02836-836939984)
Si-Mohamed SA et al. (2023) Lung dual-energy CT perfusion blood volume as a marker of severity in chronic thromboembolic pulmonary hypertension. Diagnostics (Basel) 13(4). https://doi.org/10.3390/diagnostics13040769.
Bird E et al (2023) Mapping the spatial extent of hypoperfusion in chronic thromboembolic pulmonary hypertension using multienergy CT. Radiol Cardiothorac Imaging 5(4):e220221. https://doi.org/10.1148/ryct.220221. (PMID: 10.1148/ryct.2202213769319710483250)
Koike H, Sueyoshi E, Uetani M (2022) Diagnosis of chronic thromboembolic pulmonary hypertension using quantitative lung perfusion parameters extracted from dual-energy computed tomography images. J Thorac Imaging 37(4):239–245. https://doi.org/10.1097/RTI.0000000000000646. (PMID: 10.1097/RTI.000000000000064635394985)
Perez-Johnston R et al (2021) Perfusion defects on dual-energy CTA in patients with suspected pulmonary embolism correlate with right heart strain and lower survival. Eur Radiol 31(4):2013–2021. https://doi.org/10.1007/s00330-020-07333-3. (PMID: 10.1007/s00330-020-07333-333048226)
Porembskaya O et al. (2020) Pulmonary artery thrombosis: a diagnosis that strives for its independence. Int J Mol Sci 21(14). https://doi.org/10.3390/ijms21145086.
Novelli EM, Gladwin MT (2016) Crises in sickle cell disease. Chest 149(4):1082–1093. https://doi.org/10.1016/j.chest.2015.12.016. (PMID: 10.1016/j.chest.2015.12.01626836899)
Ilerhunmwuwa NP et al (2023) Prevalence and outcomes of pulmonary embolism with sickle cell disease: analysis of the Nationwide Inpatient Sample, 2016–2020. Eur J Haematol 111(3):441–448. https://doi.org/10.1111/ejh.14025. (PMID: 10.1111/ejh.1402537293798)
فهرسة مساهمة: Keywords: Acute chest syndrome; Dual-energy computed tomography; Perfusion mapping; Pulmonary embolism; Sickle cell disease
المشرفين على المادة: 9679TC07X4 (Iodine)
تواريخ الأحداث: Date Created: 20240115 Date Completed: 20240202 Latest Revision: 20240703
رمز التحديث: 20240704
DOI: 10.1007/s10140-024-02200-w
PMID: 38224366
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-1435
DOI:10.1007/s10140-024-02200-w