دورية أكاديمية

Transplantable Subcutaneous Tumor Models.

التفاصيل البيبلوغرافية
العنوان: Transplantable Subcutaneous Tumor Models.
المؤلفون: Kranjc Brezar S; Department of Experimental Oncology, Institute of Oncology, Ljubljana, Slovenia. skranjc@onko-i.si.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2773, pp. 67-76.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Genetic Background* , Translational Research, Biomedical*, Humans ; Animals ; Mice ; Disease Models, Animal ; Heterografts ; Translational Science, Biomedical
مستخلص: Mouse tumor models are essential in cancer research, especially in elucidating malignancy, developing prevention, diagnosis, and new therapeutic approaches. Nowadays, due to standardized ways of maintaining animal colonies and the availability of mouse strains with known genetic backgrounds and approaches to reduce the variability of tumor size between animals, transplantable mouse tumor models can be widely used in translational cancer research. Here, we describe the induction of different subcutaneous tumor models in mice, in particular xenograft and syngeneic that can be used as experimental tumor models.
(© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12:31–46. (PMID: 3502220410.1158/2159-8290.CD-21-1059)
Pearlman AH, Hwang MS, Konig MF et al (2021) Targeting public neoantigens for cancer immunotherapy. Nat Cancer 2:487–497. (PMID: 34676374852588510.1038/s43018-021-00210-y)
Faubert B, Solmonson A, DeBerardinis RJ (2020) Metabolic reprogramming and cancer progression. Science 368:eaaw5473. (PMID: 32273439722778010.1126/science.aaw5473)
Walrath JC, Hawes JJ, Van Dyke T, Reilly KM (2010) Genetically engineered mouse models in cancer research. In: Advances in cancer research, vol 106. Academic Press, pp 113–164.
Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. (PMID: 1246685010.1038/nature01262)
Perlman RL (2016) Mouse models of human disease: an evolutionary perspective. Evol Med Public Health 2016:170–176. (PMID: 271214514875775)
Rosenthal N, Brown S (2007) The mouse ascending: perspectives for human-disease models. Nat Cell Biol 9:993–999. (PMID: 1776288910.1038/ncb437)
Cheon DJ, Orsulic S (2011) Mouse models of cancer. Annu Rev Pathol 6:95–119. (PMID: 2093693810.1146/annurev.pathol.3.121806.154244)
Workman P, Aboagye EO, Balkwill F et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577. (PMID: 20502460288316010.1038/sj.bjc.6605642)
Ireson CR, Alavijeh MS, Palmer AM et al (2019) The role of mouse tumour models in the discovery and development of anticancer drugs. Br J Cancer 121:101–108. (PMID: 31231121673803710.1038/s41416-019-0495-5)
Kelland LR (2004) Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40:827–836. (PMID: 1512003810.1016/j.ejca.2003.11.028)
Tammela T, Sage J (2020) Investigating tumor heterogeneity in mouse models. Annu Rev Cancer Biol 4:99–119. (PMID: 3416458910.1146/annurev-cancerbio-030419-033413)
Wade CM, Daly MJ (2005) Genetic variation in laboratory mice. Nat Genet 37:1175–1180. (PMID: 1625456310.1038/ng1666)
Lee JS, Chu IS, Mikaelyan A et al (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Gene 36:1306–1311. (PMID: 10.1038/ng1481)
Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investig New Drugs 17:343–360. (PMID: 10.1023/A:1006326203858)
Killion JJ, Radinsky R, Fidler IJ (1998) Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 17:279–284. (PMID: 1035288110.1023/A:1006140513233)
Francia G, Cruz-Munoz W, Man S et al (2011) Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 11:135–141. (PMID: 21258397454034210.1038/nrc3001)
Klerk CPW, Overmeer RM, Niers TMH et al (2007) Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 43: S7–S13, S30.
Madero-Visbal RA, Colon JF, Hernandez IC et al (2012) Bioluminescence imaging correlates with tumor progression in an orthotopic mouse model of lung cancer. Surg Oncol 21:23–29. (PMID: 2080164310.1016/j.suronc.2010.07.008)
Hoffman RM (2008) A better fluorescent protein for whole-body imaging. Trends Biotechnol 26:1–4. (PMID: 1803717710.1016/j.tibtech.2007.10.006)
Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806. (PMID: 1619575110.1038/nrc1717)
Huang L, Bommireddy R, Munoz LE et al (2021) Expression of tdTomato and luciferase in a murine lung cancer alters the growth and immune microenvironment of the tumor. PLoS One 16:e0254125. (PMID: 34411144837600110.1371/journal.pone.0254125)
Lampreht Tratar U, Horvat S, Cemazar M (2018) Transgenic mouse models in cancer research. Front Oncol 8:268. (PMID: 30079312606259310.3389/fonc.2018.00268)
Jung J (2014) Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol Res 30:1–5. (PMID: 24795792400703710.5487/TR.2014.30.1.001)
Olson B, Li Y, Lin Y et al (2018) Mouse models for cancer immunotherapy research. Cancer Discov 8:1358–1365. (PMID: 30309862872560510.1158/2159-8290.CD-18-0044)
Negro G, Aschenbrenner B, Kranjc Brezar S et al (2020) Molecular heterogeneity in breast carcinoma cells with increased invasive capacities. Radiol Oncol 54:103–118. (PMID: 32061169708742510.2478/raon-2020-0007)
Berne S, Čemažar M, Frangež R et al (2018) APS8 delays tumor growth in mice by inducing apoptosis of lung adenocarcinoma cells expressing high number of α7 nicotinic receptors. Mar Drugs 16:367. (PMID: 30282908621301910.3390/md16100367)
Kranjc Brezar S, Mrak V, Bosnjak M et al (2020) Intratumoral gene electrotransfer of plasmid DNA encoding shRNA against melanoma cell adhesion molecule radiosensitizes tumors by antivascular effects and activation of an immune response. Vaccine 8:135. (PMID: 10.3390/vaccines8010135)
Kranjc Brezar S, Prevc A, Niksic Zakelj M et al (2020) Synergistic effect of cisplatin chemotherapy combined with fractionated radiotherapy regimen in HPV-positive and HPV-negative experimental pharyngeal squamous cell carcinoma. Sci Rep 10:1563. (PMID: 32005919699450910.1038/s41598-020-58502-9)
Bozic T, Sersa G, Kranjc Brezar S et al (2021) Gene electrotransfer of proinflammatory chemokines CCL5 and CCL17 as a novel approach of modifying cytokine expression profile in the tumor microenvironment. Bioelectrochemistry 140:107795. (PMID: 3378917710.1016/j.bioelechem.2021.107795)
Sedlar A, Kranjc S, Dolinsek T et al (2013) Radiosensitizing effect of intratumoral interleukin-12 gene electrotransfer in murine sarcoma. BMC Cancer 13:38. (PMID: 23360213356251510.1186/1471-2407-13-38)
Prosen L, Hudoklin S, Cemazar M et al (2016) Magnetic field contributes to the cellular uptake for effective therapy with magnetofection using plasmid DNA encoding against Mcam in B16F10 melanoma in vivo. Nanomedicine 11:627–641. (PMID: 2702163910.2217/nnm.16.4)
Dolinsek T, Sersa G, Prosen L et al (2015) Electrotransfer of plasmid DNA encoding an anti-mouse endoglin (CD105) shRNA to B16 melanoma tumors with low and high metastatic potential results in pronounced anti-tumor effects. Cancers (Basel) 8:3. (PMID: 2671279210.3390/cancers8010003)
Remic T, Sersa G, Levpuscek K et al (2022) Tumor cell-based vaccine contributes to local tumor irradiation by eliciting a tumor model-dependent systemic immune response. Front Immunol 13:974912. (PMID: 36131926948391410.3389/fimmu.2022.974912)
Vidic S, Markelc B, Sersa G et al (2010) MicroRNAs targeting mutant K-ras by electrotransfer inhibit human colorectal adenocarcinoma cell growth in vitro and in vivo. Cancer Gene Ther 17:409–419. (PMID: 2009407110.1038/cgt.2009.87)
Hudej R, Miklavcic D, Cemazar M et al (2014) Modulation of activity of known cytotoxic ruthenium(III) compound (KP418) with hampered transmembrane transport in electrochemotherapy in vitro and in vivo. J Membr Biol 247:1239–1251. (PMID: 2495701410.1007/s00232-014-9696-2)
Prevc A, Kranjc S, Cemazar M et al (2018) Dose-modifying factor of radiation therapy with concurrent cisplatin treatment in HPV-positive squamous cell carcinoma: a preclinical study. Radiat Res 189:644–651. (PMID: 2965262110.1667/RR14984.1)
Sersa G, Jarm T, Kotnik T et al (2008) Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer 98:388–398. (PMID: 18182988236146410.1038/sj.bjc.6604168)
Kranjc S, Tevz G, Kamensek U et al (2009) Radiosensitizing effect of electrochemotherapy in a fractionated radiation regimen in radiosensitive murine sarcoma and radioresistant adenocarcinoma tumor model. Radiat Res 172:677–685. (PMID: 1992941410.1667/RR1873.1)
Kranjc S, Cemazar M, Grosel A et al (2005) Radiosensitising effect of electrochemotherapy with bleomycin in LPB sarcoma cells and tumors in mice. BMC Cancer 5:115–281. (PMID: 16168056126125710.1186/1471-2407-5-115)
Serša G, Kranjc S, Čemažar M (2000) Improvement of combined modality therapy with cisplatin and radiation using electroporation of tumors. Int J Radiat Oncol Biol Phys 46:1037–1041. (PMID: 1070502710.1016/S0360-3016(99)00464-2)
Gugel EA, Sanders ME (1986) Needle-stick transmission of human colonic adenocarcinoma. N Engl J Med 315(23):1487–1986. (PMID: 378530210.1056/NEJM198612043152314)
Geraghty RJ, Capes-Davis A, Davis JM et al (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111:1021–1046. (PMID: 25117809445383510.1038/bjc.2014.166)
فهرسة مساهمة: Keywords: Cancer research; Mouse; Subcutaneous tumor models; Syngeneic; Xenograft
تواريخ الأحداث: Date Created: 20240118 Date Completed: 20240119 Latest Revision: 20240119
رمز التحديث: 20240119
DOI: 10.1007/978-1-0716-3714-2_7
PMID: 38236537
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3714-2_7