دورية أكاديمية

Study of metalation of thioredoxin by gold(I) therapeutic compounds using combined liquid chromatography/capillary electrophoresis with inductively coupled plasma/electrospray MS/MS detection.

التفاصيل البيبلوغرافية
العنوان: Study of metalation of thioredoxin by gold(I) therapeutic compounds using combined liquid chromatography/capillary electrophoresis with inductively coupled plasma/electrospray MS/MS detection.
المؤلفون: Bernabeu De Maria M; Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France., Matczuk M; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland., Tesauro D; Department of Pharmacy and CIRPeB, Università degli Studi di Napoli Federico II, Via Montesano 49, 80131, Naples, Italy., Saviano M; Instituto Di Cristallografia (IC), CNR, 70126, Caserta, Italy., Sikorski J; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland., Chiappetta G; Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, 75005, Paris, France., Godin S; Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France., Szpunar J; Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France., Lobinski R; Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France.; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland., Ronga L; Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France. luisa.ronga@univ-pau.fr.
المصدر: Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2024 May; Vol. 416 (11), pp. 2819-2833. Date of Electronic Publication: 2024 Jan 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Heidelberg : Springer-Verlag, 2002-
مواضيع طبية MeSH: Gold*/chemistry , Tandem Mass Spectrometry*, Auranofin ; Spectrometry, Mass, Electrospray Ionization ; Gold Compounds/chemistry ; Electrophoresis, Capillary ; Immunologic Factors ; Chromatography, Liquid ; Thioredoxins
مستخلص: The reactivity of thioredoxin (Trx1) with the Au(I) drug auranofin (AF) and two therapeutic N-heterocyclic carbene (NHC) 2 -Au(I) complexes (bis [1-methyl-3-acridineimidazolin-2-ylidene]gold(I) tetrafluoroborate (Au3BC) and [1,3-diethyl-4,5-bis(4methoxyphenyl)imidazol-2-ylidene]gold(I) (Au4BC)) was investigated. Direct infusion (DI) electrospray ionization (ESI) mass spectrometry (MS) allowed information on the structure, stoichiometry, and kinetics of formation of Trx-Au adducts. The fragmentation of the formed adducts in the gas phase gave insights into the exact Au binding site within the protein, demonstrating the preference for Trx1 Cys32 or Cys35 of AF or the (NHC) 2 -Au(I) complex Au3BC, respectively. Reversed-phase HPLC suffered from the difficulty of elution of gold compounds, did not preserve the formed metal-protein adducts, and favored the loss of ligands (phosphine or NHC) from Au(I). These limitations were eliminated by capillary electrophoresis (CE) which enabled the separation of the gold compounds, Trx1, and the formed adducts. The ICP-MS/MS detection allowed the simultaneous quantitative monitoring of the gold and sulfur isotopes and the determination of the metallation extent of the protein. The hyphenation of the mentioned techniques was used for the analysis of Trx1-Au adducts for the first time.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.)
References: Zhang J, Li X, Han X, Liu R, Fang J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci. 2017;38(9):794–808. https://doi.org/10.1016/j.tips.2017.06.001 . (PMID: 10.1016/j.tips.2017.06.00128648527)
Ghareeb H, Metanis N. The thioredoxin system: a promising target for cancer drug development. Chemistry. 2020;26(45):10175–84. https://doi.org/10.1002/chem.201905792 . (PMID: 10.1002/chem.20190579232097513)
Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–9. https://doi.org/10.1046/j.1432-1327.2000.01701.x . (PMID: 10.1046/j.1432-1327.2000.01701.x11012661)
Pearson RG. Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev. 1990;100:403–25. https://doi.org/10.1016/0010-8545(90)85016-L . (PMID: 10.1016/0010-8545(90)85016-L)
Bhabak KP, Bhuyan BJ, Mugesh G. Bioinorganic and medicinal chemistry: aspects of gold(i)-protein complexes. Dalton Trans. 2011;40(10):2099. https://doi.org/10.1039/c0dt01057j . (PMID: 10.1039/c0dt01057j21321730)
Zhang X, Selvaraju K, Saei AA, et al. Repurposing of auranofin: thioredoxin reductase remains a primary target of the drug. Biochimie. 2019;162:46–54. https://doi.org/10.1016/j.biochi.2019.03.015 . (PMID: 10.1016/j.biochi.2019.03.01530946948)
Pratesi A, Gabbiani C, Ginanneschi M, Messori L. Reactions of medicinally relevant gold compounds with the C-terminal motif of thioredoxin reductase elucidated by MS analysis. Chem Commun. 2010;46(37):7001–3. https://doi.org/10.1039/C0CC01465F . (PMID: 10.1039/C0CC01465F)
Pratesi A, Gabbiani C, Michelucci E, et al. Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR(488–499): an ESI-MS investigation. J Inorg Biochem. 2014;136:161–9. https://doi.org/10.1016/j.jinorgbio.2014.01.009 . (PMID: 10.1016/j.jinorgbio.2014.01.00924524917)
Lamarche J, Alcoceba Álvarez E, Cordeau E, et al. Comparative reactivity of medicinal gold(i) compounds with the cyclic peptide vasopressin and its diselenide analogue. Dalton Trans. 2021;50(47):17487–90. https://doi.org/10.1039/D1DT03470G . (PMID: 10.1039/D1DT03470G34796892)
Ronga L, Tolbatov I, Giorgi E, et al. Mechanistic evaluations of the effects of auranofin triethylphosphine replacement with a trimethylphosphite moiety. Inorg Chem. 2023;62(26):10389–96. https://doi.org/10.1021/acs.inorgchem.3c01280 . (PMID: 10.1021/acs.inorgchem.3c012803734299410324304)
Mora M, Gimeno MC, Visbal R. Recent advances in gold–NHC complexes with biological properties. Chem Soc Rev. 2019;48(2):447–62. https://doi.org/10.1039/C8CS00570B . (PMID: 10.1039/C8CS00570B30474097)
Geri A, Massai L, Messori L. Protein metalation by medicinal gold compounds: identification of the main features of the metalation process through ESI MS experiments. Molecules. 2023;28(13). https://doi.org/10.3390/molecules28135196 .
Zoppi C, Massai L, Cirri D, Gabbiani C, Pratesi A, Messori L. Protein metalation by two structurally related gold(I) carbene complexes: an ESI MS study. Inorg Chim Acta. 2021;520: 120297. https://doi.org/10.1016/j.ica.2021.120297 . (PMID: 10.1016/j.ica.2021.120297)
Augello G, Azzolina A, Rossi F, et al. New insights into the behavior of NHC-gold complexes in cancer cells. Pharmaceutics. 2023;15(2):466. https://doi.org/10.3390/pharmaceutics15020466 . (PMID: 10.3390/pharmaceutics15020466368397889963827)
Bernabeu de Maria M, Lamarche J, Ronga L, Messori L, Szpunar J, Lobinski R. Selenol (-SeH) as a target for mercury and gold in biological systems: contributions of mass spectrometry and atomic spectroscopy. Coord Chem Rev. 2023;474:214836. https://doi.org/10.1016/j.ccr.2022.214836 . (PMID: 10.1016/j.ccr.2022.214836)
Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995;3(3):239–43. https://doi.org/10.1016/S0969-2126(01)00153-8 . (PMID: 10.1016/S0969-2126(01)00153-87788289)
Gimeno MC, Laguna A, Visbal R. N-heterocyclic carbene coinage metal complexes as intense blue-green emitters. Organometallics. 2012;31(20):7146–57. https://doi.org/10.1021/om300571m . (PMID: 10.1021/om300571m)
Liu W, Bensdorf K, Proetto M, Hagenbach A, Abram U, Gust R. Synthesis, characterization, and in vitro studies of bis[1,3-diethyl-4,5-diarylimidazol-2-ylidene]gold(I/III) complexes. J Med Chem. 2012;55(8):3713–24. https://doi.org/10.1021/jm3000196 . (PMID: 10.1021/jm300019622424185)
Wróblewska AM, Samsonowicz-Górski J, Kamińska E, Drozd M, Matczuk M. Optimization of a CE-ICP-MS/MS method for the investigation of liposome–cisplatin nanosystems and their interactions with transferrin. J Anal At Spectrom. 2022;37(7):1442–9. https://doi.org/10.1039/D1JA00459J . (PMID: 10.1039/D1JA00459J)
Massai L, Zoppi C, Cirri D, Pratesi A, Messori L. Reactions of medicinal gold(III) compounds with proteins and peptides explored by electrospray ionization mass spectrometry and complementary biophysical methods. Front Chem. 2020;8: 581648. https://doi.org/10.3389/fchem.2020.581648 . (PMID: 10.3389/fchem.2020.581648331950707609534)
Zoppi C, Messori L, Pratesi A. ESI MS studies highlight the selective interaction of auranofin with protein free thiols. Dalton Trans. 2020;49(18):5906–13. https://doi.org/10.1039/D0DT00283F . (PMID: 10.1039/D0DT00283F32314767)
Colotti G, Baiocco P, Fiorillo A, et al. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Future Med Chem. 2013;5(15):1861–75. https://doi.org/10.4155/fmc.13.146 . (PMID: 10.4155/fmc.13.14624144416)
Ilari A, Baiocco P, Messori L, et al. A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids. 2012;42(2):803–11. https://doi.org/10.1007/s00726-011-0997-9 . (PMID: 10.1007/s00726-011-0997-921833767)
Lamarche J, Bierla K, Ouerdane L, Szpunar J, Ronga L, Lobinski R. Mass spectrometry insights into interactions of selenoprotein P with auranofin and cisplatin. J Anal At Spectrom. 2022;37(5):1010–22. https://doi.org/10.1039/D2JA00090C . (PMID: 10.1039/D2JA00090C)
Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst. 2005;130(4):442–65. https://doi.org/10.1039/B418265K . (PMID: 10.1039/B418265K15776152)
Nguyen TTTN, Østergaard J, Gammelgaard B. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection. Anal Bioanal Chem. 2015;407(28):8497–503. https://doi.org/10.1007/s00216-015-8997-3 . (PMID: 10.1007/s00216-015-8997-326329282)
Kupiec M, Tomaszewska A, Jakubczak W, Haczyk-Więcek M, Pawlak K. Speciation analysis highlights the interactions of auranofin with the cytoskeleton proteins of lung cancer cells. Pharmaceuticals (Basel). 2022;15(10):1285. https://doi.org/10.3390/ph15101285 . (PMID: 10.3390/ph1510128536297397)
Kallis GB, Holmgren A. Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J Biol Chem. 1980;255(21):10261–5. https://doi.org/10.1016/S0021-9258(19)70458-X . (PMID: 10.1016/S0021-9258(19)70458-X7000775)
Giglione C, Boularot A, Meinnel T. Protein N-terminal methionine excision. Cell Mol Life Sci. 2004;61(12):1455–74. https://doi.org/10.1007/s00018-004-3466-8 . (PMID: 10.1007/s00018-004-3466-815197470)
Pratesi A, Cirri D, Ciofi L, Messori L. Reactions of auranofin and its pseudohalide derivatives with serum albumin investigated through ESI-Q-TOF MS. Inorg Chem. 2018;57(17):10507–10. https://doi.org/10.1021/acs.inorgchem.8b02177 . (PMID: 10.1021/acs.inorgchem.8b0217730109928)
Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC. A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes. 2020;8(3). https://doi.org/10.3390/proteomes8030014 .
Tolbatov I, Coletti C, Marrone A, Re N. Reactivity of gold(I) monocarbene complexes with protein targets: a theoretical study. Int J Mol Sci. 2019;20(4):820. https://doi.org/10.3390/ijms20040820 . (PMID: 10.3390/ijms20040820307698236412330)
فهرسة مساهمة: Keywords: Au(I) complexes; ESI–MS; ICP-MS; Metal-binding site; Metal-protein adducts; Trx
المشرفين على المادة: 7440-57-5 (Gold)
3H04W2810V (Auranofin)
0 (Gold Compounds)
0 (Immunologic Factors)
52500-60-4 (Thioredoxins)
تواريخ الأحداث: Date Created: 20240120 Date Completed: 20240415 Latest Revision: 20240729
رمز التحديث: 20240729
DOI: 10.1007/s00216-024-05140-z
PMID: 38244050
قاعدة البيانات: MEDLINE
الوصف
تدمد:1618-2650
DOI:10.1007/s00216-024-05140-z