دورية أكاديمية

Poly-γ-glutamic acid overproduction of Bacillus licheniformis ATCC 9945 a by developing a novel optimum culture medium and glutamate pulse feeding using different experimental design approaches.

التفاصيل البيبلوغرافية
العنوان: Poly-γ-glutamic acid overproduction of Bacillus licheniformis ATCC 9945 a by developing a novel optimum culture medium and glutamate pulse feeding using different experimental design approaches.
المؤلفون: Ebrahimzadeh Kouchesfahani M; Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran., Bahrami A; Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran., Babaeipour V; Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
المصدر: Biotechnology and applied biochemistry [Biotechnol Appl Biochem] 2024 Jun; Vol. 71 (3), pp. 565-583. Date of Electronic Publication: 2024 Jan 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 8609465 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1470-8744 (Electronic) Linking ISSN: 08854513 NLM ISO Abbreviation: Biotechnol Appl Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: Jan. 2011- : Malden : Wiley-Blackwell
Original Publication: San Diego : Academic Press, [cl986]-
مواضيع طبية MeSH: Polyglutamic Acid*/biosynthesis , Polyglutamic Acid*/analogs & derivatives , Polyglutamic Acid*/metabolism , Polyglutamic Acid*/chemistry , Bacillus licheniformis*/metabolism , Bacillus licheniformis*/growth & development , Culture Media*/chemistry , Culture Media*/metabolism , Glutamic Acid*/metabolism, Fermentation ; Research Design
مستخلص: The commercial production of multifunctional, biocompatible, and biodegradable biopolymers such as poly-γ-glutamic acid via microbial fermentation requires the development of simple and cheap methods for mass production. This study optimized the poly-γ-glutamic acid production of Bacillus licheniformis ATCC 9945 a in several steps. At first, the most critical components of the culture medium, including l-glutamic acid, citric acid, and glycerol, were selected by screening nine factors through the Plackett-Burman experimental design and then were optimized using the response surface method and the central composite design algorithm. Under optimal conditions, the production of poly-γ-glutamic acid increased by more than 4.2 times from 11.2 to 47.2 g/L. This is one of the highest production rates of this strain in submerged batch fermentation reported so far using the optimized medium compared to the conventional base medium. A novel and efficient sudden pulse feeding strategy (achieved by a novel one-factorial statistical technique) of l-glutamic acid to the optimized medium increased biopolymer production from 47.2 to 66.1 g/L, the highest value reported in published literature with this strain. This simple, reproducible, and cheap fermentation process can considerably enhance the commercial applications of the poly-γ-glutamic acid synthesized by B. licheniformis ATCC 9945 a .
(© 2024 International Union of Biochemistry and Molecular Biology, Inc.)
References: Nair P, Navale GR, Dharne MS. Poly‐gamma‐glutamic acid biopolymer: a sleeping giant with diverse applications and unique opportunities for commercialization. Biomass Convers Biorefin. 2023;13:4555–4573.
Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, et al. Microbial synthesis of poly‐γ‐glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels. 2016;9:1–12.
Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I. Poly‐γ‐glutamic acid: production, properties and applications. Microbiology. 2015;161:1–17.
Ebrahimzadeh Kouchesfahani M, Bahrami A, Babaeipour V. Improving poly‐γ‐glutamic acid production by Bacillus licheniformis ATCC 9945a strain under citrate and glutamate pulsed feedings and biopolymer characteristic evaluation. Polym Bull. 2022;79:11339–11352.
Ebrahimzadeh Kouchesfahani M, Bahrami A, Babaeipour V. Enhanced production of poly‐γ‐glutamic acid by Bacillus licheniformis ATCC 9945a using simultaneous pulse‐feedings of citrate and glutamate. Prep Biochem Biotechnol. 2022;52:961–968.
Ebrahimzadeh Kouchesfahani M, Bahrami A, Babaeipour V. Poly (γ‐glutamic acid) production enhancement in submerged fermentation of Bacillus licheniformis ATCC 9945a using optimization of operating variables and glutamate feeding. Iran J Chem Chem Eng. 2023;42:2018–2035.
Buescher JM, Margaritis A. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol. 2007;27:1–19.
Coburn JM, Kaplan DL. Engineering biomaterial–drug conjugates for local and sustained chemotherapeutic delivery. Bioconjugate Chem. 2015;26:1212–1223.
Akagi T, Matsusaki M, Akashi M. Pharmaceutical and medical applications of poly‐gamma‐glutamic acid. In: Amino‐acid homopolymers occurring in nature. Berlin, Heidelberg: Springer‐Verlag; 2010. p. 119–153.
Liu Y, Chen C. Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev. 2016;103:76–89.
Bae HH, Cho MY, Hong JH, Poo H, Sung MH, Lim YT. Bio‐derived poly(γ‐glutamic acid) nanogels as controlled anticancer drug delivery carriers. J Microbiol Biotechnol. 2012;22:1782–1789.
Nakagawa S. Efficacy and safety of poly (gamma‐glutamic acid) based nanoparticles (gamma‐PGA NPs) as vaccine carrier. Yakugaku Zasshi. 2008;128:1559–1565.
Look M, Bandyopadhyay A, Blum JS, Fahmy TM. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev. 2010;62:378–393.
Candela T, Fouet A. Poly‐gamma‐glutamate in bacteria. Mol Microbiol. 2006;60:1091–1098.
Shih L, Van YT. The production of poly‐(γ‐glutamic acid) from microorganisms and its various applications. Bioresour Technol. 2001;79:207–225.
Sirisansaneeyakul S, Cao M, Kongklom N, Chuensangjun C, Shi Z, Chisti Y. Microbial production of poly‐γ‐glutamic acid. World J Microbiol Biotechnol. 2017;33:1–8.
Ashiuchi M, Misono H. Biochemistry and molecular genetics of poly‐γ‐glutamate synthesis. Appl Microbiol Biotechnol. 2002;59:9–14.
Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. Natural and edible biopolymer poly‐γ‐glutamic acid: synthesis, production, and applications. Chem Rec. 2005;5:352–366.
Ashiuchi M. Microbial production and chemical transformation of poly‐γ‐glutamate. Microb Biotechnol. 2013;6:664–674.
Wang L, Chen S, Yu B. Poly‐γ‐glutamic acid: recent achievements, diverse applications and future perspectives. Trends Food Sci Technol. 2022;119:1–12.
Parekh S, Vinci VA, Strobel RJ. Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol. 2000;54:287–301.
Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CKM. Strategies for fermentation medium optimization: an in‐depth review. Front Microbiol. 2017;7:2087.
Ebrahimzadeh Kouchesfahani M, Bahrami A, Babaeipour V. Production increasing of poly‐γ‐glutamic acid by batch and fed‐batch cultures of Bacillus licheniformis ATCC 9945a and study of its physical and chemical structure. Modares J Biotechnol. 2023;13:80–94.
Kennedy M, Krouse D. Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol. 1999;23:456–475.
Weuster‐Botz D. Experimental design for fermentation media development: statistical design or global random search? J Biosci Bioeng. 2000;90:473–483.
Mandenius CF, Brundin A. Bioprocess optimization using design‐of‐experiments methodology. Biotechnol Progr. 2008;24:1191–1203.
Gündoğdu TK, Deniz I, Çalışkan G, Şahin ES, Azbar N. Experimental design methods for bioengineering applications. Crit Rev Biotechnol. 2016;36:368–388.
Breig SJM, Luti KJK. Response surface methodology: a review on its applications and challenges in microbial cultures. Mater Today: Proc. 2021;42:2277–2284.
Oppermann‐Sanio FB, Steinbüchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften. 2002;89:11–22.
Birrer GA, Cromwick AM, Gross RA. γ‐Poly (glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Int J Biol Macromol. 1994;16:265–275.
Cromwick AM, Gross RA. Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and γ‐poly (glutamic acid) formation. Int J Biol Macromol. 1995;17:259–267.
Cromwick AM, Birrer GA, Gross RA. Effects of pH and aeration on γ‐poly (glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng. 1996;50:222–227.
Feng J, Shi Q, Zhou G, Wang L, Chen A, Xie X, et al. Improved production of poly‐γ‐glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a. Process Biochem. 2017;56:30–36.
Troy FA. Chemistry and biosynthesis of the poly (γ‐d‐glutamyl) capsule in Bacillus licheniformis: I. Properties of the membrane‐mediated biosynthetic reaction. J Biol Chem. 1973;248:305–315.
Troy FA. Chemistry and biosynthesis of the poly (γ‐d‐glutamyl) capsule in Bacillus licheniformis: II. Characterization and structural properties of the enzymatically synthesized polymer. J Biol Chem. 1973;248:316–324.
Ko YH, Gross RA. Effects of glucose and glycerol on γ‐poly (glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng. 1998;57:430–437.
Mitsunaga H, Meissner L, Büchs J, Fukusaki E. Branched chain amino acids maintain the molecular weight of poly (γ‐glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation. J Biosci Bioeng. 2016;122:400–405.
Mitsunaga H, Meissner L, Palmen T, Bamba T, Büchs J, Fukusaki E. Metabolome analysis reveals the effect of carbon catabolite control on the poly (γ‐glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. J Biosci Bioeng. 2016;121:413–419.
Giannos SA, Shah D, Gross RA, Kaplan DL, Mayer JM. Poly (glutamic acid) produced by bacterial fermentation. In: Novel biodegradable microbial polymers. Dordrecht: Springer; 1990. p. 457–460.
Yoon SH, Do JH, Lee SY, Chang HN. Production of poly‐γ‐glutamic acid by fed‐batch culture of Bacillus licheniformis. Biotechnol Lett. 2000;22:585–588.
Wang D, Kim H, Lee S, Kim DH, Joe MH. High‑level production of poly‑γ‑glutamic acid from untreated molasses by Bacillus siamensis IR10. Microb Cell Fact. 2020;19:101.
Li X, Yang H, Zhou M, Zhan Y, Liu J, Yan D, et al. A novel strategy of feeding nitrate for cost‐effective production of poly‐γ‐glutamic acid from crude glycerol by Bacillus licheniformis WX‐02. Biochem Eng J. 2021;176:108156.
Shih IL, Van YT, Chang YN. Application of statistical experimental methods to optimize production of poly (γ‐glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb Technol. 2002;31:213–220.
Ebrahimzadeh Kouchesfahani M, Babaeipour V. Micro bioreactor scale‐up and industrialization: a critical review of the methods, their prerequisites, and perquisites. Minerva Biotecnol. 2020;32:64–78.
Goto A, Kunioka M. Biosynthesis and hydrolysis of poly (γ‐glutamic acid) from Bacillus subtilis IF03335. Biosci Biotechnol Biochem. 1992;56:1031–1035.
Hsueh YH, Huang KY, Kunene SC, Lee TY. Poly‐γ‐glutamic acid synthesis, gene regulation, phylogenetic relationships, and role in fermentation. Int J Mol Sci. 2017;18:2644.
Dahiya D, Chettri R, Nigam PS. Biosynthesis of polyglutamic acid (γ‐PGA), a biodegradable and economical polyamide biopolymer for industrial applications. In: Microbial and natural macromolecules. Cambridge, MA: Academic Press; 2021. p. 681–688.
Kampen WH. Nutritional requirements in fermentation processes. In: Fermentation and biochemical engineering. Norwich, NY: William Andrew Publishing; 2014. p. 37–57.
Dong H, Zhang D. Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact. 2014;13:1–11.
Lee SY, Kim HU. Systems strategies for developing industrial microbial strains. Nat Biotechnol. 2015;33:1061–1072.
Srivastava RK, Akhtar N, Verma M, Imandi SB. Primary metabolites from overproducing microbial system using sustainable substrates. Biotechnol Appl Biochem. 2020;67:852–874.
Xiong C, Shouwen C, Ming S, Ziniu Y. Medium optimization by response surface methodology for poly‐γ‐glutamic acid production using dairy manure as the basis of a solid substrate. Appl Microbiol Biotechnol. 2005;69:390–396.
Mohanraj R, Gnanamangai BM, Ramesh K, Priya P, Srisunmathi R, Poornima S, et al. Optimized production of gamma poly glutamic acid (γ‐PGA) using sago. Biocatal Agric Biotechnol. 2019;22:101413.
Xavier JR, Madhan Kumarr MM, Natarajan G, Ramana KV, Semwal AD. Optimized production of poly γ‐glutamic acid (γ‐PGA) using Bacillus licheniformis and its application as cryoprotectant for probiotics. Biotechnol Appl Biochem. 2020;67:892–902.
Ibáñez F, Saa PA, Bárzaga L, Duarte‐Mermoud MA, Fernández‐Fernández M, Agosin E, et al. Robust control of fed‐batch high‐cell density cultures: a simulation‐based assessment. Comput Chem Eng. 2021;155:107545.
Mears L, Stocks SM, Sin G, Gernaey KV. A review of control strategies for manipulating the feed rate in fed‐batch fermentation processes. J Biotechnol. 2017;245:34–46.
Regestein née Meissner L, Arndt J, Palmen TG, Jestel T, Mitsunaga H, Fukusaki E, et al. Investigation of poly (γ‐glutamic acid) production via online determination of viscosity and oxygen transfer rate in shake flasks. J Biol Eng. 2017;11:1–16.
Kongklom N, Chuensangjun C, Pechyen C, Sirisansaneeyakul S. Production of poly‐γ‐glutamic acid by Bacillus licheniformis: synthesis and characterization. J Met Mater Miner. 2012;22:7–11.
Najar IN, Das S. Poly‐glutamic acid (PGA)‐structure, synthesis, genomic organization and its application: a review. Int J Pharm Sci Res. 2015;6:2258–2280.
Moradali MF, Rehm BH. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 2020;18:195–210.
Bajaj I, Singhal R. Poly (glutamic acid) – an emerging biopolymer of commercial interest. Bioresour Technol. 2011;102:5551–5561.
Zhang C, Wu D, Qiu X. Stimulatory effects of amino acids on γ‐polyglutamic acid production by Bacillus subtilis. Sci Rep. 2018;8:1–9.
فهرسة مساهمة: Keywords: Bacillus licheniformis; poly‐γ‐glutamic acid; response surface optimization
المشرفين على المادة: 25513-46-6 (Polyglutamic Acid)
0 (Culture Media)
0 (poly(gamma-glutamic acid))
3KX376GY7L (Glutamic Acid)
تواريخ الأحداث: Date Created: 20240121 Date Completed: 20240610 Latest Revision: 20240610
رمز التحديث: 20240610
DOI: 10.1002/bab.2559
PMID: 38246886
قاعدة البيانات: MEDLINE
الوصف
تدمد:1470-8744
DOI:10.1002/bab.2559