دورية أكاديمية

Variant of the lactase LCT gene explains association between milk intake and incident type 2 diabetes.

التفاصيل البيبلوغرافية
العنوان: Variant of the lactase LCT gene explains association between milk intake and incident type 2 diabetes.
المؤلفون: Luo K; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA., Chen GC; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.; Department of Nutrition and Food Hygiene, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China., Zhang Y; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA., Moon JY; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA., Xing J; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA., Peters BA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA., Usyk M; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA., Wang Z; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA., Hu G; Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA., Li J; Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA., Selvin E; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA., Rebholz CM; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA., Wang T; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA., Isasi CR; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA., Yu B; Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA., Knight R; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA., Boerwinkle E; Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA., Burk RD; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.; Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA., Kaplan RC; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA., Qi Q; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA. qibin.qi@einsteinmed.edu.; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. qibin.qi@einsteinmed.edu.
المصدر: Nature metabolism [Nat Metab] 2024 Jan; Vol. 6 (1), pp. 169-186. Date of Electronic Publication: 2024 Jan 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: Germany NLM ID: 101736592 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2522-5812 (Electronic) Linking ISSN: 25225812 NLM ISO Abbreviation: Nat Metab Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Nature, [2019]-
مواضيع طبية MeSH: Lactase*/genetics , Lactase*/metabolism , Diabetes Mellitus, Type 2*/genetics, Male ; Female ; Animals ; Cattle ; Humans ; Milk ; Genotype ; Diet
مستخلص: Cow's milk is frequently included in the human diet, but the relationship between milk intake and type 2 diabetes (T2D) remains controversial. Here, using data from the Hispanic Community Health Study/Study of Latinos, we show that in both sexes, higher milk intake is associated with lower risk of T2D in lactase non-persistent (LNP) individuals (determined by a variant of the lactase LCT gene, single nucleotide polymorphism rs4988235 ) but not in lactase persistent individuals. We validate this finding in the UK Biobank. Further analyses reveal that among LNP individuals, higher milk intake is associated with alterations in gut microbiota (for example, enriched Bifidobacterium and reduced Prevotella) and circulating metabolites (for example, increased indolepropionate and reduced branched-chain amino acid metabolites). Many of these metabolites are related to the identified milk-associated bacteria and partially mediate the association between milk intake and T2D in LNP individuals. Our study demonstrates a protective association between milk intake and T2D among LNP individuals and a potential involvement of gut microbiota and blood metabolites in this association.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Pereira, P. C. Milk nutritional composition and its role in human health. Nutrition 30, 619–627 (2014). (PMID: 2480066410.1016/j.nut.2013.10.011)
Gijsbers, L. et al. Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 103, 1111–1124 (2016). (PMID: 2691249410.3945/ajcn.115.123216)
Alvarez-Bueno, C. et al. Effects of milk and dairy product consumption on type 2 diabetes: overview of systematic reviews and meta-analyses. Adv. Nutr. 10, S154–S163 (2019). (PMID: 31089734651813710.1093/advances/nmy107)
Segurel, L. & Bon, C. On the evolution of lactase persistence in humans. Annu Rev. Genomics Hum. Genet. 18, 297–319 (2017). (PMID: 2842628610.1146/annurev-genom-091416-035340)
Storhaug, C. L., Fosse, S. K. & Fadnes, L. T. Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2, 738–746 (2017). (PMID: 2869013110.1016/S2468-1253(17)30154-1)
Anguita-Ruiz, A., Aguilera, C. M. & Gil, A. Genetics of lactose intolerance: an updated review and online interactive world maps of phenotype and genotype frequencies. Nutrients 12, 2689 (2020). (PMID: 32899182755141610.3390/nu12092689)
Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016). (PMID: 2769495910.1038/ng.3663)
Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021). (PMID: 33462485851519910.1038/s41588-020-00763-1)
Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 54, 134–142 (2022). (PMID: 35115689988304110.1038/s41588-021-00991-z)
Lopera-Maya, E. A. et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat. Genet. 54, 143–151 (2022). (PMID: 3511569010.1038/s41588-021-00992-y)
Kitaoka, M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv. Nutr. 3, 422S–429S (2012). (PMID: 22585921364947910.3945/an.111.001420)
Chen, J., Chen, X. & Ho, C. L. Recent development of probiotic bifidobacteria for treating human diseases. Front. Bioeng. Biotechnol. 9, 770248 (2021). (PMID: 35004640872786810.3389/fbioe.2021.770248)
Qi, Q. et al. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 71, 1095–1105 (2022). (PMID: 3412752510.1136/gutjnl-2021-324053)
Roager, H. M. & Licht, T. R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9, 3294 (2018). (PMID: 30120222609809310.1038/s41467-018-05470-4)
Guenther, P. M. et al. The Healthy Eating Index-2010 is a valid and reliable measure of diet quality according to the 2010 Dietary Guidelines for Americans. J. Nutr. 144, 399–407 (2014). (PMID: 24453128392755210.3945/jn.113.183079)
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res. 48, D445–D453 (2020). (PMID: 3158639410.1093/nar/gkz862)
Parks, D. H. et al. A complete domain-to-species taxonomy for bacteria and archaea. Nat. Biotechnol. 38, 1079–1086 (2020).
Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009). (PMID: 1883839110.1093/nar/gkn663)
Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022). (PMID: 3541867410.1038/s41586-022-04567-7)
Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018). (PMID: 2948975310.1038/nature25973)
de Leeuw, C., Savage, J., Bucur, I. G., Heskes, T. & Posthuma, D. Understanding the assumptions underlying Mendelian randomization. Eur. J. Hum. Genet. 30, 653–660 (2022). (PMID: 35082398917770010.1038/s41431-022-01038-5)
Diener, C. et al. Genome-microbiome interplay provides insight into the determinants of the human blood metabolome. Nat. Metab. 4, 1560–1572 (2022). (PMID: 36357685969162010.1038/s42255-022-00670-1)
Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature 588, 135–140 (2020). (PMID: 3317771210.1038/s41586-020-2896-2)
Chen, L. et al. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat. Med. 28, 2333–2343 (2022). (PMID: 36216932967180910.1038/s41591-022-02014-8)
Gojda, J. & Cahova, M. Gut microbiota as the link between elevated BCAA serum levels and insulin resistance. Biomolecules 11, 1414 (2021). (PMID: 34680047853362410.3390/biom11101414)
Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021). (PMID: 34127070820449110.1186/s40168-021-01101-1)
Guha, S. & Majumder, K. Comprehensive review of gamma-glutamyl peptides (gamma-GPs) and their effect on inflammation concerning cardiovascular health. J. Agric. Food Chem. 70, 7851–7870 (2022). (PMID: 3572788710.1021/acs.jafc.2c01712)
Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018). (PMID: 2990243710.1016/j.chom.2018.05.003)
Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961 (2018). (PMID: 3040143510.1016/j.cell.2018.09.055)
Dekkers, K. F. et al. An online atlas of human plasma metabolite signatures of gut microbiome composition. Nat. Commun. 13, 5370 (2022). (PMID: 36151114950813910.1038/s41467-022-33050-0)
Mitri, J. et al. Dairy intake and type 2 diabetes risk factors: a narrative review. Diabetes Metab. Syndr. 13, 2879–2887 (2019). (PMID: 3142595210.1016/j.dsx.2019.07.064)
Jensen, C. F., Timofeeva, M. & Berg-Beckhoff, G. Milk consumption and the risk of type 2 diabetes: a systematic review of Mendelian randomization studies. Nutr. Metab. Cardiovasc. Dis. 33, 1316–1322 (2023). (PMID: 3724607710.1016/j.numecd.2023.04.013)
Reitmeier, S. et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe 28, 258–272 (2020). (PMID: 3261944010.1016/j.chom.2020.06.004)
Li, Q. et al. Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci. Rep. 10, 5450 (2020). (PMID: 32214153709650110.1038/s41598-020-62224-3)
He, Y. et al. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome 6, 172 (2018). (PMID: 30249275615494210.1186/s40168-018-0557-6)
Marcobal, A. et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10, 507–514 (2011). (PMID: 22036470322756110.1016/j.chom.2011.10.007)
Sun, F. et al. A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Res. Int. 126, 108590 (2019). (PMID: 3173204710.1016/j.foodres.2019.108590)
Chung, W. S. F. et al. Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran arabinoxylan-oligosaccharides. BMC Microbiol. 20, 283 (2020). (PMID: 32928123749087210.1186/s12866-020-01968-4)
Natividad, J. M. et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 9, 2802 (2018). (PMID: 30022049605210310.1038/s41467-018-05249-7)
Aslam, H. et al. The effects of dairy and dairy derivatives on the gut microbiota: a systematic literature review. Gut Microbes 12, 1799533 (2020). (PMID: 32835617752434610.1080/19490976.2020.1799533)
Fernandez-Raudales, D. et al. Consumption of different soymilk formulations differentially affects the gut microbiomes of overweight and obese men. Gut Microbes 3, 490–500 (2012). (PMID: 22895080349578610.4161/gmic.21578)
Precup, G. & Vodnar, D.-C. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br. J. Nutr. 122, 131–140 (2019).
Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016). (PMID: 2740981110.1038/nature18646)
Smith, E. A. & Macfarlane, G. T. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 81, 288–302 (1996). (PMID: 881005610.1111/j.1365-2672.1996.tb04331.x)
Crovesy, L., El-Bacha, T. & Rosado, E. L. Modulation of the gut microbiota by probiotics and symbiotics is associated with changes in serum metabolite profile related to a decrease in inflammation and overall benefits to metabolic health: a double-blind randomized controlled clinical trial in women with obesity. Food Funct. 12, 2161–2170 (2021). (PMID: 3356555810.1039/D0FO02748K)
Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 13, e1002179 (2016). (PMID: 27898682512751310.1371/journal.pmed.1002179)
Ferrell, J. M. & Chiang, J. Y. L. Understanding bile acid signaling in diabetes: from pathophysiology to therapeutic targets. Diabetes Metab. J. 43, 257–272 (2019). (PMID: 31210034658155210.4093/dmj.2019.0043)
Prawitt, J., Caron, S. & Staels, B. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr. Diab. Rep. 11, 160–166 (2011). (PMID: 21431855333841110.1007/s11892-011-0187-x)
Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016). (PMID: 2732006410.1016/j.cmet.2016.05.005)
Kaul, A., Mandal, S., Davidov, O. & Peddada, S. D. Analysis of microbiome data in the presence of excess zeros. Front. Microbiol. 8, 2114 (2017). (PMID: 29163406568200810.3389/fmicb.2017.02114)
Patti, M. E. et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obes. 17, 1671–1677 (2009). (PMID: 10.1038/oby.2009.102)
Montonen, J., Knekt, P., Jarvinen, R. & Reunanen, A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 27, 362–366 (2004). (PMID: 1474721410.2337/diacare.27.2.362)
Molinaro, A. et al. Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat. Commun. 11, 5881 (2020). (PMID: 33208748767623110.1038/s41467-020-19589-w)
Chai, J. C. et al. Serum metabolomics of incident diabetes and glycemic changes in a population with high diabetes burden: the Hispanic Community Health Study/Study of Latinos. Diabetes 71, 1338–1349 (2022). (PMID: 35293992916355510.2337/db21-1056)
Lavange, L. M. et al. Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. Ann. Epidemiol. 20, 642–649 (2010). (PMID: 20609344292162210.1016/j.annepidem.2010.05.006)
Sorlie, P. D. et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann. Epidemiol. 20, 629–641 (2010). (PMID: 20609343290495710.1016/j.annepidem.2010.03.015)
Qi, Q. et al. Objectively measured sedentary time and cardiometabolic biomarkers in US Hispanic/Latino adults: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Circulation 132, 1560–1569 (2015). (PMID: 26416808461824610.1161/CIRCULATIONAHA.115.016938)
Siega-Riz, A. M. et al. Food-group and nutrient-density intakes by Hispanic and Latino backgrounds in the Hispanic Community Health Study/Study of Latinos. Am. J. Clin. Nutr. 99, 1487–1498 (2014). (PMID: 24760972402178710.3945/ajcn.113.082685)
Conomos, M. P. et al. Genetic diversity and association studies in US Hispanic/Latino Populations: applications in the Hispanic Community Health Study/Study of Latinos. Am. J. Hum. Genet. 98, 165–184 (2016). (PMID: 26748518471670410.1016/j.ajhg.2015.12.001)
Feofanova, E. V. et al. A genome-wide association study discovers 46 loci of the human metabolome in the Hispanic Community Health Study/Study of Latinos. Am. J. Hum. Genet. 107, 849–863 (2020). (PMID: 33031748767500010.1016/j.ajhg.2020.09.003)
Wang, Z. et al. Microbial co-occurrence complicates associations of gut microbiome with US immigration, dietary intake and obesity. Genome Biol. 22, 336 (2021). (PMID: 34893089866551910.1186/s13059-021-02559-w)
Hillmann, B. et al. SHOGUN: a modular, accurate and scalable framework for microbiome quantification. Bioinformatics 36, 4088–4090 (2020). (PMID: 32365167735975510.1093/bioinformatics/btaa277)
Zhu, Q. et al. Phylogeny-aware analysis of metagenome community ecology based on matched reference genomes while bypassing taxonomy. mSystems 7, e0016722 (2022). (PMID: 3536972710.1128/msystems.00167-22)
Lin, H. & Peddada, S. D. Analysis of microbial compositions: a review of normalization and differential abundance analysis. NPJ Biofilms Microbiomes 6, 60 (2020). (PMID: 33268781771073310.1038/s41522-020-00160-w)
Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015). (PMID: 25826379438046510.1371/journal.pmed.1001779)
Chen, G. C. et al. Association of oily and nonoily fish consumption and fish oil supplements with incident type 2 diabetes: a large population-based prospective study. Diabetes Care 44, 672–680 (2021). (PMID: 33431419789626910.2337/dc20-2328)
Eastwood, S. V. et al. Algorithms for the capture and adjudication of prevalent and incident diabetes in UK Biobank. PLoS ONE 11, e0162388 (2016). (PMID: 27631769502516010.1371/journal.pone.0162388)
Wright, J. D. et al. The ARIC (Atherosclerosis Risk In Communities) Study: JACC Focus Seminar 3/8. J. Am. Coll. Cardiol. 77, 2939–2959 (2021). (PMID: 34112321866759310.1016/j.jacc.2021.04.035)
Feofanova, E. V. et al. Whole-genome sequencing analysis of human metabolome in multi-ethnic populations. Nat. Commun. 14, 3111 (2023). (PMID: 372537141022959810.1038/s41467-023-38800-2)
Yin, X. et al. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat. Commun. 13, 1644 (2022). (PMID: 35347128896077010.1038/s41467-022-29143-5)
Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022). (PMID: 35551307917901810.1038/s41588-022-01058-3)
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023). (PMID: 36653562984912610.1038/s41586-022-05473-8)
Zhao, Q. Y., Wang, J. S., Hemani, G., Bowden, J. & Small, D. S. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann. Stat. 48, 1742–1769 (2020). (PMID: 10.1214/19-AOS1866)
معلومات مُعتمدة: R00 DK122128 United States DK NIDDK NIH HHS; R01 HL059367 United States HL NHLBI NIH HHS; R01 DK119268 United States DK NIDDK NIH HHS; N01HC65235 United States HL NHLBI NIH HHS; U01 HG004402 United States HG NHGRI NIH HHS; HHSN268201700001I United States HL NHLBI NIH HHS; R01 HL140976 United States HL NHLBI NIH HHS; R01 HL142003 United States HL NHLBI NIH HHS; HHSN268201700003I United States HL NHLBI NIH HHS; R01 HL136266 United States HL NHLBI NIH HHS; UL1 RR025005 United States RR NCRR NIH HHS; R01 DK120870 United States DK NIDDK NIH HHS; R01 DK126698 United States DK NIDDK NIH HHS; R01 MD011389 United States MD NIMHD NIH HHS; R01 HL086694 United States HL NHLBI NIH HHS; N01HC65236 United States HL NHLBI NIH HHS; U54 GM104940 United States GM NIGMS NIH HHS; N01HC65234 United States HL NHLBI NIH HHS; P30 DK111022 United States DK NIDDK NIH HHS; N01HC65233 United States HL NHLBI NIH HHS; HHSN268201700002C United States HL NHLBI NIH HHS; N01HC65237 United States HL NHLBI NIH HHS; HHSN268201700004I United States HL NHLBI NIH HHS; HHSN268201700005C United States HL NHLBI NIH HHS; HHSN268201700001C United States HL NHLBI NIH HHS; HHSN268201700003C United States HL NHLBI NIH HHS; R01 HL141824 United States HL NHLBI NIH HHS; HHSN268201700004C United States HL NHLBI NIH HHS; HHSN268201700002I United States HL NHLBI NIH HHS; HHSN268201700005I United States HL NHLBI NIH HHS; R01 HL060712 United States HL NHLBI NIH HHS; UM1 HG008898 United States HG NHGRI NIH HHS; R01 DK132011 United States DK NIDDK NIH HHS; R01 HL087641 United States HL NHLBI NIH HHS
المشرفين على المادة: EC 3.2.1.108 (Lactase)
تواريخ الأحداث: Date Created: 20240122 Date Completed: 20240130 Latest Revision: 20240923
رمز التحديث: 20240923
مُعرف محوري في PubMed: PMC11097298
DOI: 10.1038/s42255-023-00961-1
PMID: 38253929
قاعدة البيانات: MEDLINE
الوصف
تدمد:2522-5812
DOI:10.1038/s42255-023-00961-1