دورية أكاديمية

When smoke meets gut: deciphering the interactions between tobacco smoking and gut microbiota in disease development.

التفاصيل البيبلوغرافية
العنوان: When smoke meets gut: deciphering the interactions between tobacco smoking and gut microbiota in disease development.
المؤلفون: Chen B; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China., Zeng G; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China., Sun L; State Key Laboratory of Women's Reproductive Health and Fertility Promotion, Peking University, Beijing, 100191, China. lulusun@bjmu.edu.cn.; Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China. lulusun@bjmu.edu.cn., Jiang C; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China. jiangchangtao@bjmu.edu.cn.; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China. jiangchangtao@bjmu.edu.cn.; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China. jiangchangtao@bjmu.edu.cn.; State Key Laboratory of Women's Reproductive Health and Fertility Promotion, Peking University, Beijing, 100191, China. jiangchangtao@bjmu.edu.cn.
المصدر: Science China. Life sciences [Sci China Life Sci] 2024 May; Vol. 67 (5), pp. 854-864. Date of Electronic Publication: 2024 Jan 19.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Science China Press, co-published with Springer Country of Publication: China NLM ID: 101529880 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-1889 (Electronic) Linking ISSN: 16747305 NLM ISO Abbreviation: Sci China Life Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Beijing : Science China Press, co-published with Springer
مواضيع طبية MeSH: Gastrointestinal Microbiome* , Tobacco Smoking*/adverse effects , Dysbiosis*/microbiology, Humans ; Nicotine/adverse effects ; Nicotine/metabolism ; Animals ; Gastrointestinal Tract/microbiology ; Smoking Cessation ; Pulmonary Disease, Chronic Obstructive/microbiology ; Pulmonary Disease, Chronic Obstructive/etiology
مستخلص: Tobacco smoking is a prevalent and detrimental habit practiced worldwide, increasing the risk of various diseases, including chronic obstructive pulmonary disease (COPD), cardiovascular disease, liver disease, and cancer. Although previous research has explored the detrimental health effects of tobacco smoking, recent studies suggest that gut microbiota dysbiosis may play a critical role in these outcomes. Numerous tobacco smoke components, such as nicotine, are found in the gastrointestinal tract and interact with gut microbiota, leading to lasting impacts on host health and diseases. This review delves into the ways tobacco smoking and its various constituents influence gut microbiota composition and functionality. We also summarize recent advancements in understanding how tobacco smoking-induced gut microbiota dysbiosis affects host health. Furthermore, this review introduces a novel perspective on how changes in gut microbiota following smoking cessation may contribute to withdrawal syndrome and the degree of health improvements in smokers.
(© 2024. Science China Press.)
References: Abdel-Rahman, O., Helbling, D., Schöb, O., Eltobgy, M., Mohamed, H., Schmidt, J., giryes, A., Mehrabi, A., Iype, S., John, H., et al. (2017). Cigarette smoking as a risk factor for the development of and mortality from hepatocellular carcinoma: An updated systematic review of 81 epidemiological studies. J Evid Based Med 10, 245–254. (PMID: 2889127510.1111/jebm.12270)
Al Bataineh, M.T., Dash, N.R., Elkhazendar, M., Alnusairat, D.M.H., Darwish, I.M.I., Al-Hajjaj, M.S., and Hamid, Q. (2020). Revealing oral microbiota composition and functionality associated with heavy cigarette smoking. J Transl Med 18, 421. (PMID: 33167991765399610.1186/s12967-020-02579-3)
Allais, L., Kerckhof, F., Verschuere, S., Bracke, K.R., De Smet, R., Laukens, D., Van den Abbeele, P., De Vos, M., Boon, N., Brusselle, G.G., et al. (2016). Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ Microbiol 18, 1352–1363. (PMID: 2603351710.1111/1462-2920.12934)
Ananthakrishnan, A.N. (2015). Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 12, 205–217. (PMID: 2573274510.1038/nrgastro.2015.34)
Andrews, M.C., Duong, C.P.M., Gopalakrishnan, V., Iebba, V., Chen, W.S., Derosa, L., Khan, M.A.W., Cogdill, A.P., White, M.G., Wong, M.C., et al. (2021). Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat Med 27, 1432–1441. (PMID: 3423913710.1038/s41591-021-01406-6)
Antinozzi, M., Giffi, M., Sini, N., Gallè, F., Valeriani, F., De Vito, C., Liguori, G., Romano Spica, V., and Cattaruzza, M.S. (2022). Cigarette smoking and human gut microbiota in healthy adults: a systematic review. Biomedicines 10, 510. (PMID: 35203720896224410.3390/biomedicines10020510)
Aron-Wisnewsky, J., Warmbrunn, M.V., Nieuwdorp, M., and Clément, K. (2020). Nonalcoholic fatty liver disease: modulating gut microbiota to improve severity? Gastroenterology 158, 1881–1898. (PMID: 3204431710.1053/j.gastro.2020.01.049)
Arthur, J.C., Perez-Chanona, E., Mühlbauer, M., Tomkovich, S., Uronis, J.M., Fan, T.J., Campbell, B.J., Abujamel, T., Dogan, B., Rogers, A.B., et al. (2012). Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123. (PMID: 22903521364530210.1126/science.1224820)
Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G., Yamasaki, S., Saito, T., Ohba, Y., et al. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341. (PMID: 2120564010.1126/science.1198469)
Bai, X., Wei, H., Liu, W., Coker, O.O., Gou, H., Liu, C., Zhao, L., Li, C., Zhou, Y., Wang, G., et al. (2022). Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites. Gut 71, 2439–2450. (PMID: 3538787810.1136/gutjnl-2021-325021)
Benowitz, N.L. (1988). Pharmacologic aspects of cigarette smoking and nicotine addiction. N Engl J Med 319, 1318–1330. (PMID: 305455110.1056/NEJM198811173192005)
Benson, T.W., Conrad, K.A., Li, X.S., Wang, Z., Helsley, R.N., Schugar, R.C., Coughlin, T.M., Wadding-Lee, C., Fleifil, S., Russell, H.M., et al. (2023). Gut microbiotaderived trimethylamine N-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation 147, 1079–1096. (PMID: 370110731007141510.1161/CIRCULATIONAHA.122.060573)
Berkowitz, L., Pardo-Roa, C., Salazar, G.A., Salazar-Echegarai, F., Miranda, J.P., Ramírez, G., Chávez, J.L., Kalergis, A.M., Bueno, S.M., and Álvarez-Lobos, M. (2019). Mucosal exposure to cigarette components induces intestinal inflammation and alters antimicrobial response in mice. Front Immunol 10, 2289. (PMID: 31608070677392510.3389/fimmu.2019.02289)
Biedermann, L., Brülisauer, K., Zeitz, J., Frei, P., Scharl, M., Vavricka, S.R., Fried, M., Loessner, M.J., Rogler, G., and Schuppler, M. (2014). Smoking cessation alters intestinal microbiota. Inflamm Bowel Dis 20, 1496–1501. (PMID: 2507250010.1097/MIB.0000000000000129)
Biedermann, L., Zeitz, J., Mwinyi, J., Sutter-Minder, E., Rehman, A., Ott, S.J., Steurer-Stey, C., Frei, A., Frei, P., Scharl, M., et al. (2013). Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS ONE 8, e59260–10. (PMID: 23516617359760510.1371/journal.pone.0059260)
Breton, J., Le Clère, K., Daniel, C., Sauty, M., Nakab, L., Chassat, T., Dewulf, J., Penet, S., Carnoy, C., Thomas, P., et al. (2013). Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine. Arch Toxicol 87, 1787–1795. (PMID: 2350362810.1007/s00204-013-1032-6)
Cai, J., Sun, L., and Gonzalez, F.J. (2022). Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 30, 289–300. (PMID: 35271802892353210.1016/j.chom.2022.02.004)
Cani, P.D. (2019). Microbiota and metabolites in metabolic diseases. Nat Rev Endocrinol 15, 69–70. (PMID: 3060273710.1038/s41574-018-0143-9)
Caussy, C., and Loomba, R. (2018). Gut microbiome, microbial metabolites and the development of NAFLD. Nat Rev Gastroenterol Hepatol 15, 719–720. (PMID: 3015857110.1038/s41575-018-0058-x)
Chakaroun, R.M., Olsson, L.M., and Bäckhed, F. (2023). The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nat Rev Cardiol 20, 217–235. (PMID: 3624172810.1038/s41569-022-00771-0)
Chen, B., Sun, L., Zeng, G., Shen, Z., Wang, K., Yin, L., Xu, F., Wang, P., Ding, Y., Nie, Q., et al. (2022). Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. Nature 610, 562–568. (PMID: 36261549958993110.1038/s41586-022-05299-4)
Chi, L., Bian, X., Gao, B., Tu, P., Ru, H., and Lu, K. (2017a). The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome. Toxicol Sci 160, 193–204. (PMID: 28973555583732610.1093/toxsci/kfx174)
Chi, L., Mahbub, R., Gao, B., Bian, X., Tu, P., Ru, H., and Lu, K. (2017b). Nicotine alters the gut microbiome and metabolites of gut-brain interactions in a sex-specific manner. Chem Res Toxicol 30, 2110–2119. (PMID: 2903504410.1021/acs.chemrestox.7b00162)
Darby, T.D., McNamee, J.E., and van Rossum, J.M. (1984). Cigarette smoking pharmacokinetics and its relationship to smoking behaviour. Clin Pharmacokinet 9, 435–449. (PMID: 638895310.2165/00003088-198409050-00003)
de Vos, W.M., Tilg, H., Van Hul, M., and Cani, P.D. (2022). Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032. (PMID: 3510566410.1136/gutjnl-2021-326789)
Duncan, M.S., Greevy, R.A., Tindle, H.A., Vasan, R.S., Lipworth, L., Aldrich, M.C., Lloyd-Jones, D.M., and Freiberg, M.S. (2022). Inclusion of smoking data in cardiovascular disease risk estimation. JAMA Cardiol 7, 195–203. (PMID: 3487849310.1001/jamacardio.2021.4990)
Finnicum, C., Rahal, Z., Hassane, M., Treekitkarnmongkol, W., Sinjab, A., Morris, R., Liu, Y., Tang, E., Viet, S., Petersen, J., et al. (2022). Pathogenesis of tobacco-associated lung adenocarcinoma is closely coupled with changes in the gut and lung microbiomes. Int J Mol Sci 23, 10930. (PMID: 36142843950277410.3390/ijms231810930)
Fiore, M.C., Fleming, M.F., and Burns, M.E. (1999). Tobacco and alcohol abuse: clinical opportunities for effective intervention. Proc Assoc Am Phys 111, 131–140. (PMID: 1022080810.1046/j.1525-1381.1999.09249.x)
Fluhr, L., Mor, U., Kolodziejczyk, A.A., Dori-Bachash, M., Leshem, A., Itav, S., Cohen, Y., Suez, J., Zmora, N., Moresi, C., et al. (2021). Gut microbiota modulates weight gain in mice after discontinued smoke exposure. Nature 600, 713–719. (PMID: 3488050210.1038/s41586-021-04194-8)
Fouad, H., Commar, A., Hamadeh, R., El-Awa, F., Shen, Z., and Fraser, C. (2021). Estimated and projected prevalence of tobacco smoking in males, Eastern Mediterranean Region, 2000–2025. East Mediterr Health J 27, 76–82. (PMID: 3353832210.26719/2021.27.1.76)
Fowkes, F.G.R., Aboyans, V., Fowkes, F.J.I., McDermott, M.M., Sampson, U.K.A., and Criqui, M.H. (2017). Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol 14, 156–170. (PMID: 2785315810.1038/nrcardio.2016.179)
Fromentin, S., Forslund, S.K., Chechi, K., Aron-Wisnewsky, J., Chakaroun, R., Nielsen, T., Tremaroli, V., Ji, B., Prifti, E., Myridakis, A., et al. (2022). Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat Med 28, 303–314. (PMID: 35177860886357710.1038/s41591-022-01688-4)
Gagliani, N., Hu, B., Huber, S., Elinav, E., and Flavell, R.A. (2014). The fire within: microbes inflame tumors. Cell 157, 776–783. (PMID: 2481360510.1016/j.cell.2014.03.006)
Garcia, W.L., Miller, C.J., Lomas, G.X., Gaither, K.A., Tyrrell, K.J., Smith, J.N., Brandvold, K.R., and Wright, A.T. (2022). Profiling how the gut microbiome modulates host xenobiotic metabolism in response to benzo[a]pyrene and 1-nitropyrene exposure. Chem Res Toxicol 35, 585–596. (PMID: 35347982987858410.1021/acs.chemrestox.1c00360)
Grahnemo, L., Nethander, M., Coward, E., Gabrielsen, M.E., Sree, S., Billod, J.M., Engstrand, L., Abrahamsson, S., Langhammer, A., Hveem, K., et al. (2022). Cross-sectional associations between the gut microbe Ruminococcus gnavus and features of the metabolic syndrome: the HUNT study. Lancet Diabetes Endocrinol 10, 481–483. (PMID: 3566239910.1016/S2213-8587(22)00113-9)
Gui, X., Yang, Z., and Li, M.D. (2021). Effect of cigarette smoke on gut microbiota: state of knowledge. Front Physiol 12, 673341. (PMID: 34220536824576310.3389/fphys.2021.673341)
Gunasekaran, M., Trabelcy, B., Izhaki, I., and Halpern, M. (2021). Direct evidence that sunbirds’ gut microbiota degrades floral nectar’s toxic alkaloids. Front Microbiol 12, 639808. (PMID: 33815326801828910.3389/fmicb.2021.639808)
Guo, J., Zhao, Y., Jiang, X., Li, R., Xie, H., Ge, L., Xie, B., Yang, X., and Zhang, L. (2018). Exposure to formaldehyde perturbs the mouse gut microbiome. Genes 9, 192. (PMID: 29614050592453410.3390/genes9040192)
Harris, K.K., Zopey, M., and Friedman, T.C. (2016). Metabolic effects of smoking cessation. Nat Rev Endocrinol 12, 299–308. (PMID: 26939981502152610.1038/nrendo.2016.32)
Hecht, S.S., and Hatsukami, D.K. (2022). Smokeless tobacco and cigarette smoking: chemical mechanisms and cancer prevention. Nat Rev Cancer 22, 143–155. (PMID: 34980891930844710.1038/s41568-021-00423-4)
Hoffmann, D., Hoffmann, I., and El-Bayoumy, K. (2001). The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chem Res Toxicol 14, 767–790. (PMID: 1145372310.1021/tx000260u)
Huang, R., Li, M., and Gregory, R.L. (2012). Effect of nicotine on growth and metabolism of Streptococcus mutans. Eur J Oral Sci 120, 319–325. (PMID: 2281322210.1111/j.1600-0722.2012.00971.x)
Institute of Medicine. (2001). Clearing the Smoke: Assessing the Science Base for Tobacco Harm Reduction. Washington: The National Academies Press.
InterAct, C., Spijkerman, A.M.W., van der A, D.L., Nilsson, P.M., Ardanaz, E., Gavrila, D., Agudo, A., Arriola, L., Balkau, B., Beulens, J.W., et al. (2014). Smoking and long-term risk of type 2 diabetes: the EPIC-InterAct Study in European populations. Diabetes Care 37, 3164–3171. (PMID: 10.2337/dc14-1020)
Iwai, T., Chiba, K., and Narukawa, T. (2016). Arsenic speciation and cadmium determination in tobacco leaves, ash and smoke. Anal Sci 32, 957–962. (PMID: 2768240010.2116/analsci.32.957)
Ji, H., and Jin, Z. (2022). Analysis of six aromatic amines in the mainstream smoke of tobacco products. Anal Bioanal Chem 414, 4227–4234. (PMID: 35410388912464910.1007/s00216-022-04075-7)
Jin, L., Shi, X., Yang, J., Zhao, Y., Xue, L., Xu, L., and Cai, J. (2021). Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein Cell 12, 346–359. (PMID: 3298968610.1007/s13238-020-00785-9)
Joehanes, R., Just, A.C., Marioni, R.E., Pilling, L.C., Reynolds, L.M., Mandaviya, P.R., Guan, W., Xu, T., Elks, C.E., Aslibekyan, S., et al. (2016). Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet 9, 436–447. (PMID: 27651444526732510.1161/CIRCGENETICS.116.001506)
Joosten, M.M., Pai, J.K., Bertoia, M.L., Rimm, E.B., Spiegelman, D., Mittleman, M.A., and Mukamal, K.J. (2012). Associations between conventional cardiovascular risk factors and risk of peripheral artery disease in men. JAMA 308, 1660–1667. (PMID: 23093164373310610.1001/jama.2012.13415)
Kaplan, G.G., and Ng, S.C. (2017). Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152, 313–321.e2.
Kim, K.W., Kang, S.G., Song, S.W., Kim, N.R., Rho, J.S., and Lee, Y.A. (2017). Association between the time of length since smoking cessation and insulin resistance in asymptomatic Korean male ex-smokers. J Diabetes Res 2017, 1–7.
Kobayashi, T., and Fujiwara, K. (2013). Identification of heavy smokers through their intestinal microbiota by data mining analysis. Biosci Microbiota Food Health 32, 77–80. (PMID: 24936365403432010.12938/bmfh.32.77)
Koh, A., Molinaro, A., Ståhlman, M., Khan, M.T., Schmidt, C., Mannerås-Holm, L., Wu, H., Carreras, A., Jeong, H., Olofsson, L.E., et al. (2018). Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17. (PMID: 3040143510.1016/j.cell.2018.09.055)
Lai, H.C., Lin, T.L., Chen, T.W., Kuo, Y.L., Chang, C.J., Wu, T.R., Shu, C.C., Tsai, Y.H., Swift, S., and Lu, C.C. (2022). Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteirii lipopolysaccharide. Gut 71, 309–321. (PMID: 3368794310.1136/gutjnl-2020-322599)
Le Foll, B., Piper, M.E., Fowler, C.D., Tonstad, S., Bierut, L., Lu, L., Jha, P., and Hall, W. D. (2022). Tobacco and nicotine use. Nat Rev Dis Primers 8, 19. (PMID: 3533214810.1038/s41572-022-00346-w)
Lee, S.H., Yun, Y., Kim, S.J., Lee, E.J., Chang, Y., Ryu, S., Shin, H., Kim, H.L., Kim, H. N., and Lee, J.H. (2018). Association between cigarette smoking status and composition of gut microbiota: population-based cross-sectional study. J Clin Med 7, 282. (PMID: 30223529616256310.3390/jcm7090282)
Leite, G., Barlow, G.M., Hosseini, A., Parodi, G., Pimentel, M.L., Wang, J., Fiorentino, A., Rezaie, A., Pimentel, M., and Mathur, R. (2022). Smoking has disruptive effects on the small bowel luminal microbiome. Sci Rep 12, 6231. (PMID: 35422064901047010.1038/s41598-022-10132-z)
Li, D., Miao, J., Pan, L., Zhou, Y., Gao, Z., Yang, Y., Xu, R., and Zhang, X. (2021). Impacts of benzo(a)pyrene exposure on scallop (Chlamys farreri) gut health and gut microbiota composition. Sci Total Environ 799, 149471. (PMID: 3437139910.1016/j.scitotenv.2021.149471)
Li, M., Huang, R., Zhou, X., Qiu, W., Xu, X., and Gregory, R.L. (2016). Effect of nicotine on cariogenic virulence of Streptococcus mutans. Folia Microbiol 61, 505–512. (PMID: 10.1007/s12223-016-0465-8)
Lin, R., Zhang, Y., Chen, L., Qi, Y., He, J., Hu, M., Zhang, Y., Fan, L., Yang, T., Wang, L., et al. (2020). The effects of cigarettes and alcohol on intestinal microbiota in healthy men. J Microbiol 58, 926–937. (PMID: 3299730510.1007/s12275-020-0006-7)
Lindberg, E., Jarnerot, G., and Huitfeldt, B. (1992). Smoking in Crohn’s disease: effect on localisation and clinical course. Gut 33, 779–782. (PMID: 1624159137933510.1136/gut.33.6.779)
Lindell, G., Lunell, E., and Graffner, H. (1996). Transdermally administered nicotine accumulates in gastric juice. Eur J Clin Pharmacol 51, 315–318. (PMID: 901070510.1007/s002280050204)
Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., Ripke, S., Lee, J.C., Jostins, L., Shah, T., et al. (2015). Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47, 979–986. (PMID: 26192919488181810.1038/ng.3359)
Liu, Y., Méric, G., Havulinna, A.S., Teo, S.M., Åberg, F., Ruuskanen, M., Sanders, J., Zhu, Q., Tripathi, A., Verspoor, K., et al. (2022). Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting. Cell Metab 34, 719–730.e4. (PMID: 35354069909758910.1016/j.cmet.2022.03.002)
Lu, K., Abo, R.P., Schlieper, K.A., Graffam, M.E., Levine, S., Wishnok, J.S., Swenberg, J.A., Tannenbaum, S.R., and Fox, J.G. (2014). Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122, 284–291. (PMID: 24413286394804010.1289/ehp.1307429)
Lynch, S.V., and Pedersen, O. (2016). The human intestinal microbiome in health and disease. N Engl J Med 375, 2369–2379. (PMID: 2797404010.1056/NEJMra1600266)
Marti-Aguado, D., Clemente-Sanchez, A., and Bataller, R. (2022). Cigarette smoking and liver diseases. J Hepatol 77, 191–205. (PMID: 3513140610.1016/j.jhep.2022.01.016)
Motta, J.P., Flannigan, K.L., Agbor, T.A., Beatty, J.K., Blackler, R.W., Workentine, M. L., Da Silva, G.J., Wang, R., Buret, A.G., and Wallace, J.L. (2015). Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm Bowel Dis 21, 1006–1017. (PMID: 2573837310.1097/MIB.0000000000000345)
Mu, J., Guo, Z., Wang, X., Wang, X., Fu, Y., Li, X., Zhu, F., Hu, G., and Ma, X. (2022). Seaweed polysaccharide relieves hexavalent chromium-induced gut microbial homeostasis. Front Microbiol 13, 1100988. (PMID: 3672656910.3389/fmicb.2022.1100988)
Mukherjee, S., and Banerjee, R.P. (1947). The solubilization of quinine by bile salts. J Am Pharm Assoc (Sci Ed) 36, 314–316. (PMID: 10.1002/jps.3030361008)
National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. (2014). Reports of the Surgeon General. In The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Atlanta: Centers for Disease Control and Prevention (US).
Neurath, M.F. (2020). Host-microbiota interactions in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17, 76–77. (PMID: 3184847410.1038/s41575-019-0248-1)
Nolan-Kenney, R., Wu, F., Hu, J., Yang, L., Kelly, D., Li, H., Jasmine, F., Kibriya, M.G., Parvez, F., Shaheen, I., et al. (2020). The association between smoking and gut microbiome in Bangladesh. Nicotine Tobacco Res 22, 1339–1346. (PMID: 10.1093/ntr/ntz220)
Onor, I.C.O., Stirling, D.L., Williams, S.R., Bediako, D., Borghol, A., Harris, M.B., Darensburg, T.B., Clay, S.D., Okpechi, S.C., and Sarpong, D.F. (2017). Clinical effects of cigarette smoking: epidemiologic impact and review of pharmacotherapy options. Int J Environ Res Public Health 14, 1147. (PMID: 28956852566464810.3390/ijerph14101147)
Opstelten, J.L., Plassais, J., van Mil, S.W.C., Achouri, E., Pichaud, M., Siersema, P.D., Oldenburg, B., and Cervino, A.C.L. (2016). Gut microbial diversity is reduced in smokers with Crohn’s disease. Inflamm Bowel Dis 22, 2070–2077. (PMID: 2754212710.1097/MIB.0000000000000875)
Pan, Z., Hu, Y., Huang, Z., Han, N., Li, Y., Zhuang, X., Yin, J., Peng, H., Gao, Q., Zhang, W., et al. (2022). Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Sci China Life Sci 65, 2093–2113. (PMID: 3530170510.1007/s11427-021-2056-1)
Pavia, C.S., Pierre, A., and Nowakowski, J. (2000). Antimicrobial activity of nicotine against a spectrum of bacterial and fungal pathogens. J Med Microbiol 49, 675–676. (PMID: 1088209510.1099/0022-1317-49-7-675)
Pohl, K., Moodley, P., and Dhanda, A.D. (2021). Alcohol’s Impact on the Gut and Liver. Nutrients 13, 3170. (PMID: 34579046847283910.3390/nu13093170)
Pushpanathan, P., Mathew, G.S., Selvarajan, S., Seshadri, K.G., and Srikanth, P. (2019). Gut microbiota and its mysteries. Ind J Med Microbiol 37, 268–277. (PMID: 10.4103/ijmm.IJMM_19_373)
Qi, X., Yun, C., Sun, L., Xia, J., Wu, Q., Wang, Y., Wang, L., Zhang, Y., Liang, X., Wang, L., et al. (2019). Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med 25, 1225–1233. (PMID: 31332392737636910.1038/s41591-019-0509-0)
Qu, Z., Zhang, L., Hou, R., Ma, X., Yu, J., Zhang, W., and Zhuang, C. (2021). Exposure to a mixture of cigarette smoke carcinogens disturbs gut microbiota and influences metabolic homeostasis in A/J mice. Chem Biol Interact 344, 109496. (PMID: 3393997610.1016/j.cbi.2021.109496)
Quintanilla-Mena, M., Vega-Arreguin, J., Del Río-García, M., Patiño-Suárez, V., Peraza-Echeverria, S., and Puch-Hau, C. (2021). The effect of benzo[a]pyrene on the gut microbiota of Nile tilapia (Oreochromis niloticus). Appl Microbiol Biotechnol 105, 7935–7947. (PMID: 3454268310.1007/s00253-021-11592-5)
Ribière, C., Peyret, P., Parisot, N., Darcha, C., Déchelotte, P.J., Barnich, N., Peyretaillade, E., and Boucher, D. (2016). Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci Rep 6, 31027. (PMID: 27503127497752210.1038/srep31027)
Richardson, J.B., Dancy, B.C.R., Horton, C.L., Lee, Y.S., Madejczyk, M.S., Xu, Z.Z., Ackermann, G., Humphrey, G., Palacios, G., Knight, R., et al. (2018). Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep 8, 6578. (PMID: 29700420591990310.1038/s41598-018-24931-w)
Rigotti, N.A., Kruse, G.R., Livingstone-Banks, J., and Hartmann-Boyce, J. (2022). Treatment of tobacco smoking. JAMA 327, 566. (PMID: 3513341110.1001/jama.2022.0395)
Rodrigues, V.S.T., Moura, E.G., Peixoto, T.C., Soares, P.N., Lopes, B.P., Oliveira, E., Manhães, A.C., Atella, G.C., Kluck, G.E.G., Cabral, S.S., et al. (2021). Changes in gut-brain axis parameters in adult rats of both sexes with different feeding pattern that were early nicotine-exposed. Food Chem Toxicol 158, 112656. (PMID: 3474071410.1016/j.fct.2021.112656)
Rom, O., Avezov, K., Aizenbud, D., and Reznick, A.Z. (2013). Cigarette smoking and inflammation revisited. Respir Physiol Neurobiol 187, 5–10. (PMID: 2337606110.1016/j.resp.2013.01.013)
Rom, O., Korach-Rechtman, H., Hayek, T., Danin-Poleg, Y., Bar, H., Kashi, Y., and Aviram, M. (2017). Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice. Arch Toxicol 91, 1709–1725. (PMID: 2769613510.1007/s00204-016-1859-8)
Russel, M.G.V.M., Volovics, A., Schoon, E.J., van Wijlick, E.H.J., Logan, R.F., Shivananda, S., and Stockbriigger, R.W. (1998). Inflammatory bowel disease: is there any relation between smoking status and disease presentation? Inflamm Bowel Dis 4, 182–186. (PMID: 974101910.1097/00054725-199808000-00002)
Saalim, M., Villegas-Moreno, J., and Clark, B.R. (2020). Bacterial alkyl-4-quinolones: discovery, structural diversity and biological properties. Molecules 25, 5689. (PMID: 33276615773102810.3390/molecules25235689)
Schick, S., and Glantz, S. (2005). Philip Morris toxicological experiments with fresh sidestream smoke: more toxic than mainstream smoke. Tobacco Control 14, 396–404. (PMID: 16319363174812110.1136/tc.2005.011288)
Schmiterlöw, C.G., and Hansson, E. (1962). Physiological disposition and fate of nicotine labelled with carbon-14 in mice. Nature 194, 298–299. (PMID: 1403903210.1038/194298b0)
Semmler-Behnke, M., Takenaka, S., Fertsch, S., Wenk, A., Seitz, J., Mayer, P., Oberdörster, G., and Kreyling, W.G. (2007). Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 115, 728–733. (PMID: 17520060186798610.1289/ehp.9685)
Shanahan, E.R., Shah, A., Koloski, N., Walker, M.M., Talley, N.J., Morrison, M., and Holtmann, G.J. (2018). Influence of cigarette smoking on the human duodenal mucosa-associated microbiota. Microbiome 6, 150. (PMID: 30157953611650710.1186/s40168-018-0531-3)
Siahpush, M., Singh, G.K., Tibbits, M., Pinard, C.A., Shaikh, R.A., and Yaroch, A. (2014). It is better to be a fat ex-smoker than a thin smoker: findings from the 1997–2004 National Health Interview Survey-National Death Index linkage study. Tob Control 23, 395–402. (PMID: 2357464410.1136/tobaccocontrol-2012-050912)
Smith, C.J., Perfetti, T.A., Morton, M.J., Rodgman, A., Garg, R., Selassie, C.D., and Hansch, C. (2002). The relative toxicity of substituted phenols reported in cigarette mainstream smoke. Toxicol Sci 69, 265–278. (PMID: 1221568210.1093/toxsci/69.1.265)
Snook, M.E., Fortson, P.J., and Chortyk, O.T. (1981). Isolation and ldentification of aza-arenes of tobacco smoke. Contrib Tobacco Nicotine Res 11, 67–78. (PMID: 10.2478/cttr-2013-0499)
Sobkowiak, R., and Lesicki, A. (2013). Absorption, metabolism and excretion of nicotine in humans (in Polish). Postepy Biochem 59, 33–44. (PMID: 23821941)
Stein-Thoeringer, C.K., Saini, N.Y., Zamir, E., Blumenberg, V., Schubert, M.L., Mor, U., Fante, M.A., Schmidt, S., Hayase, E., Hayase, T., et al. (2023). A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat Med 29, 906–916. (PMID: 369148931012186410.1038/s41591-023-02234-6)
Stewart, C.J., Auchtung, T.A., Ajami, N.J., Velasquez, K., Smith, D.P., De La Garza Ii, R., Salas, R., and Petrosino, J.F. (2018). Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study. PeerJ 6, e4693–10. (PMID: 29736335610637210.7717/peerj.4693)
Sublette, M.G., Cross, T.W.L., Korcarz, C.E., Hansen, K.M., Murga-Garrido, S.M., Hazen, S.L., Wang, Z., Oguss, M.K., Rey, F.E., and Stein, J.H. (2020). Effects of smoking and smoking cessation on the intestinal microbiota. J Clin Med 9, 2963. (PMID: 32937839756417910.3390/jcm9092963)
Sun, L., Xie, C., Wang, G., Wu, Y., Wu, Q., Wang, X., Liu, J., Deng, Y., Xia, J., Chen, B., et al. (2018). Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 24, 1919–1929. (PMID: 30397356647922610.1038/s41591-018-0222-4)
Sun, R., Xu, K., Ji, S., Pu, Y., Man, Z., Ji, J., Chen, M., Yin, L., Zhang, J., and Pu, Y. (2020). Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice. Sci Total Environ 705, 135879. (PMID: 3197292710.1016/j.scitotenv.2019.135879)
Suzuki, T., Yazaki, Y., Voors, A.A., Jones, D.J.L., Chan, D.C.S., Anker, S.D., Cleland, J. G., Dickstein, K., Filippatos, G., Hillege, H.L., et al. (2019). Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure: results from BIOSTAT-CHF. Eur J Heart Fail 21, 877–886. (PMID: 3037097610.1002/ejhf.1338)
Talhout, R., Schulz, T., Florek, E., Van Benthem, J., Wester, P., and Opperhuizen, A. (2011). Hazardous compounds in tobacco smoke. Int J Environ Res Public Health 8, 613–628. (PMID: 21556207308448210.3390/ijerph8020613)
Talmor-Barkan, Y., Bar, N., Shaul, A.A., Shahaf, N., Godneva, A., Bussi, Y., Lotan-Pompan, M., Weinberger, A., Shechter, A., Chezar-Azerrad, C., et al. (2022). Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nat Med 28, 295–302. (PMID: 3517785910.1038/s41591-022-01686-6)
Tam, A., Filho, F.S.L., Ra, S.W., Yang, J., Leung, J.M., Churg, A., Wright, J.L., and Sin, D.D. (2020). Effects of sex and chronic cigarette smoke exposure on the mouse cecal microbiome. PLoS ONE 15, e0230932–10. (PMID: 32251484713514910.1371/journal.pone.0230932)
Thomson, N.C., Polosa, R., and Sin, D.D. (2022). Cigarette smoking and asthma. J Allergy Clin Immunol Pract 10, 2783–2797. (PMID: 3553399710.1016/j.jaip.2022.04.034)
Tomoda, K., Kubo, K., Asahara, T., Andoh, A., Nomoto, K., Nishii, Y., Yamamoto, Y., Yoshikawa, M., and Kimura, H. (2011). Cigarette smoke decreases organic acids levels and population of bifidobacterium in the caecum of rats. J Toxicol Sci 36, 261–266. (PMID: 2162895410.2131/jts.36.261)
Tuganbaev, T., Yoshida, K., and Honda, K. (2022). The effects of oral microbiota on health. Science 376, 934–936. (PMID: 3561738010.1126/science.abn1890)
Visseren, F.L.J., Mach, F., Smulders, Y.M., Carballo, D., Koskinas, K.C., Bäck, M., Benetos, A., Biffi, A., Boavida, J.M., Capodanno, D., et al. (2021). 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 42, 3227–3337. (PMID: 3445890510.1093/eurheartj/ehab484)
Wang, H. (2012). Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins. World J Gastroenterol 18, 2180. (PMID: 22611310335176710.3748/wjg.v18.i18.2180)
Wang, Z., Roberts, A.B., Buffa, J.A., Levison, B.S., Zhu, W., Org, E., Gu, X., Huang, Y., Zamanian-Daryoush, M., Culley, M.K., et al. (2015). Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595. (PMID: 26687352487161010.1016/j.cell.2015.11.055)
Warren, C.W., Lee, J., Lea, V., Goding, A., O’hara, B., Carlberg, M., Asma, S., and Mckenna, M. (2009). Evolution of the Global Tobacco Surveillance System (GTSS) 1998–2008. Glob Health Promot 16, 4–37. (PMID: 1977023310.1177/1757975909342181)
Wu, H., Wu, R., Chen, X., Geng, H., Hu, Y., Gao, L., Fu, J., Pi, J., and Xu, Y. (2022). Developmental arsenic exposure induces dysbiosis of gut microbiota and disruption of plasma metabolites in mice. Toxicol Appl Pharmacol 450, 116174. (PMID: 3587879810.1016/j.taap.2022.116174)
Wu, J., Wang, K., Wang, X., Pang, Y., and Jiang, C. (2021a). The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 12, 360–373. (PMID: 3334690510.1007/s13238-020-00814-7)
Wu, Q., Liang, X., Wang, K., Lin, J., Wang, X., Wang, P., Zhang, Y., Nie, Q., Liu, H., Zhang, Z., et al. (2021b). Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab 33, 1988–2003.e7. (PMID: 3432956810.1016/j.cmet.2021.07.007)
Wu, S., Yang, S., Wang, M., Song, N., Feng, J., Wu, H., Yang, A., Liu, C., Li, Y., Guo, F., et al. (2023). Quorum sensing-based interactions among drugs, microbes, and diseases. Sci China Life Sci 66, 137–151. (PMID: 3593348910.1007/s11427-021-2121-0)
Yalcin, E., and de la Monte, S. (2016). Tobacco nitrosamines as culprits in disease: mechanisms reviewed. J Physiol Biochem 72, 107–120. (PMID: 26767836486896010.1007/s13105-016-0465-9)
Yamazaki, H., Horiuchi, K., Takano, R., Nagano, T., Shimizu, M., Kitajima, M., Murayama, N., and Shono, F. (2010). Human blood concentrations of cotinine, a biomonitoring marker for tobacco smoke, extrapolated from nicotine metabolism in rats and humans and physiologically based pharmacokinetic modeling. Int J Environ Res Public Health 7, 3406–3421. (PMID: 20948932295455310.3390/ijerph7093406)
Yang, J., Chen, W., Sun, Y., Liu, J., and Zhang, W. (2021a). Effects of cadmium on organ function, gut microbiota and its metabolomics profile in adolescent rats. Ecotoxicol Environ Saf 222, 112501. (PMID: 3426552810.1016/j.ecoenv.2021.112501)
Yang, J., Feng, P., Ling, Z., Khan, A., Wang, X., Chen, Y., Ali, G., Fang, Y., Salama, E. S., Wang, X., et al. (2023). Nickel exposure induces gut microbiome disorder and serum uric acid elevation. Environ Pollution 324, 121349. (PMID: 10.1016/j.envpol.2023.121349)
Yang, S.S., Chen, Y.H., Hu, J.T., Chiu, C.F., Hung, S.W., Chang, Y.C., Chiu, C.C., and Chuang, H.L. (2021b). Aldehyde dehydrogenase mutation exacerbated high-fatdiet-induced nonalcoholic fatty liver disease with gut microbiota remodeling in male mice. Biology 10, 737. (PMID: 34439969838969310.3390/biology10080737)
Yoon, H., Lee, D.H., Lee, J.H., Kwon, J.E., Shin, C.M., Yang, S.J., Park, S.H., Lee, J.H., Kang, S.W., Lee, J.S., et al. (2021). Characteristics of the gut microbiome of healthy young male soldiers in South Korea: the effects of smoking. Gut Liver 15, 243–252. (PMID: 3239040710.5009/gnl19354)
Yoshimoto, S., Loo, T.M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., Iwakura, Y., Oshima, K., Morita, H., Hattori, M., et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101. (PMID: 2380376010.1038/nature12347)
Zeng, J., Yang, K., Nie, H., Yuan, L., Wang, S., Zeng, L., Ge, A., and Ge, J. (2023). The mechanism of intestinal microbiota regulating immunity and inflammation in ischemic stroke and the role of natural botanical active ingredients in regulating intestinal microbiota: A review. Biomed Pharmacother 157, 114026. (PMID: 3643649110.1016/j.biopha.2022.114026)
Zhang, L., Jing, J., Han, L., Wang, J., Zhang, W., Liu, Z., and Gao, A. (2021a). Characterization of gut microbiota, metabolism and cytokines in benzene-induced hematopoietic damage. Ecotoxicol Environ Saf 228, 112956. (PMID: 3478113210.1016/j.ecoenv.2021.112956)
Zhang, W., Sun, Z., Zhang, Q., Sun, Z., Su, Y., Song, J., Wang, B., and Gao, R. (2021b). Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children. BMC Pediatr 21, 86. (PMID: 33596845788812010.1186/s12887-021-02539-w)
Zhao, Y., Liu, H., Wang, Q., Li, B., Zhang, H., and Pi, Y. (2019). The effects of benzo[a] pyrene on the composition of gut microbiota and the gut health of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish Shellfish Immunol 93, 369–379. (PMID: 3135696010.1016/j.fsi.2019.07.073)
Zubcevic, J., Watkins, J., Lin, C., Bautista, B., Hatch, H.M., Tevosian, S.G., and Hayward, L.F. (2022). Nicotine exposure during rodent pregnancy alters the composition of maternal gut microbiota and abundance of maternal and amniotic short chain fatty acids. Metabolites 12, 735. (PMID: 36005607941431410.3390/metabo12080735)
فهرسة مساهمة: Keywords: gut microbiota dysbiosis; nicotine; smoking cessation; tobacco smoking
المشرفين على المادة: 6M3C89ZY6R (Nicotine)
تواريخ الأحداث: Date Created: 20240124 Date Completed: 20240506 Latest Revision: 20240603
رمز التحديث: 20240603
DOI: 10.1007/s11427-023-2446-y
PMID: 38265598
قاعدة البيانات: MEDLINE
الوصف
تدمد:1869-1889
DOI:10.1007/s11427-023-2446-y