دورية أكاديمية

Fermented Rooibos tea (Aspalathus linearis) Ameliorates Sodium Fluoride-Induced Cardiorenal Toxicity, Oxidative Stress, and Inflammation via Modulation of NF-κB/IκB/IκKB Signaling Pathway in Wistar Rats.

التفاصيل البيبلوغرافية
العنوان: Fermented Rooibos tea (Aspalathus linearis) Ameliorates Sodium Fluoride-Induced Cardiorenal Toxicity, Oxidative Stress, and Inflammation via Modulation of NF-κB/IκB/IκKB Signaling Pathway in Wistar Rats.
المؤلفون: Ajuwon OR; Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria. olawale.ajuwon@fuoye.edu.ng., Adeleke TA; Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria., Ajiboye BO; Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria., Lawal AO; Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo State, Nigeria., Folorunso I; Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo State, Nigeria., Brai B; Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria., Bamisaye FA; Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria., Falode JA; Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria., Odoh IM; Department of Biochemistry, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria.; Medical Center, Federal University, Oye-Ekiti, Oye-Are Road, P.M.B. 373, Oye-Ekiti, 371104, Ekiti State, Nigeria., Adegbite KI; Department of Environmental Health Science, College of Basic Medical and Health Sciences, Fountain University, Osogbo, P.M.B. 4491, Osogbo, Osun State, Nigeria., Adegoke OB; Department of Chemical Pathology, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria.
المصدر: Cardiovascular toxicology [Cardiovasc Toxicol] 2024 Mar; Vol. 24 (3), pp. 240-257. Date of Electronic Publication: 2024 Feb 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 101135818 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0259 (Electronic) Linking ISSN: 15307905 NLM ISO Abbreviation: Cardiovasc Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Totowa, NJ : Humana Press, c2001-
مواضيع طبية MeSH: Sodium Fluoride* , Aspalathus*/metabolism, Rats ; Male ; Animals ; Rats, Wistar ; NF-kappa B/metabolism ; Creatinine/pharmacology ; Hydrogen Peroxide ; Oxidative Stress ; Signal Transduction ; Inflammation/metabolism ; RNA, Messenger/metabolism ; RNA, Messenger/pharmacology ; Tea
مستخلص: High dose of fluoride intake is associated with toxic effects on kidney and cardiac tissues. This study evaluated the potential protective effect of fermented rooibos tea (RTE) on sodium fluoride (NaF)-induced cardiorenal toxicity in rats. Male Wistar rats (n = 56) were randomly allocated into one of seven equal groups: control, NaF (100 mg/kg orally), NaF + RTE (2%, w/v), NaF + RTE (4%, w/v), NaF + lisinopril (10 mg/kg orally), 2% RTE, and 4% RTE. The experiment lasted for 14 days and RTE was administered to the rats as their sole source of drinking fluid. NaF induced cardiorenal toxicity indicated by elevated level of urea, creatinine, LDH, creatinine kinase-MB, and cardiac troponin I in the serum, accompanied by altered histopathology of the kidney and heart. Furthermore, levels of H 2 O 2 , malondialdehyde, and NO were elevated, while GSH level was depleted in the kidney and heart due to NaF intoxication. Protein levels of c-reactive protein, TNFα, IL-1B, and NF-κB were increased by NaF in the serum, kidney, and heart. RTE at 2% and 4% (w/v) reversed cardiorenal toxicity, resolved histopathological impairment, attenuated oxidative stress and inhibited formation of pro-inflammatory markers. RTE at both concentrations down-regulates the mRNA expression of NF-κB, and upregulates the mRNA expression of both IκB and IκKB, thus blocking the activation of NF-κB signaling pathway. Taken together, these results clearly suggest that the protective potential of rooibos tea against NaF-induced cardiorenal toxicity, oxidative stress, and inflammation may be associated with the modulation of the NF-κB signaling pathway.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Balaha, M., Ahmed, N., Geddawy, A., & Kandeel, S. (2021). Fraxetin prevented sodium fluoride-induced chronic pancreatitis in rats: Role of anti-inflammatory, antioxidant, antifibrotic and anti-apoptotic activities. International Immunopharmacology, 93, 107372. (PMID: 3352480210.1016/j.intimp.2021.107372)
Caballero, B., Trugo, L., & Finglas, P. (2003). Encyclopedia of food sciences and nutrition: Volumes 1–10. Encyclopedia of Food Sciences and Nutrition: Volumes 1–10., (Ed. 2).
Yadav, K. K., Kumar, S., Pham, Q. B., Gupta, N., Rezania, S., Kamyab, H., Yadav, S., Vymazal, J., Kumar, V., Tri, D. Q., & Talaiekhozani, A. (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety, 182, 109362. (PMID: 3125485610.1016/j.ecoenv.2019.06.045)
Kabir, H., Gupta, A. K., & Tripathy, S. (2020). Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology, 50(11), 1116–1193. (PMID: 10.1080/10643389.2019.1647028)
Oyagbemi, A. A., Omobowale, T. O., Ola-Davies, O. E., Asenuga, E. R., Ajibade, T. O., Adejumobi, O. A., Afolabi, J. M., Ogunpolu, B. S., Falayi, O. O., Saba, A. B., & Adedapo, A. A. (2018). Luteolin-mediated Kim-1/NF-kB/Nrf2 signalling pathways protects sodium fluoride- induced hypertension and cardiovascular complications. BioFactors, 44(6), 518–531. (PMID: 3047489410.1002/biof.1449)
Oyagbemi, A. A., Omobowale, T. O., Ola-Davies, O. E., Asenuga, E. R., Ajibade, T. O., Adejumobi, O. A., Afolabi, J. M., Ogunpolu, B. S., Falayi, O. O., Ayodeji, F., & Hassan, F. O. (2018). Ameliorative effect of rutin on sodium fluoride-induced hypertension through modulation of Kim-1/NF-κB/Nrf2 signalling pathway in rats. Environmental Toxicology. https://doi.org/10.1002/tox.22636. (PMID: 10.1002/tox.2263630259632)
Sharma, P., Verma, P. K., Sood, S., Singh, M., & Verma, D. (2023). Impact of chronic sodium fluoride toxicity on antioxidant capacity, biochemical parameters, and histomorphology in cardiac, hepatic, and renal tissues of Wistar rats. Biological Trace Element Research, 201(1), 229–241. (PMID: 3502304710.1007/s12011-022-03113-w)
Luo, Q., Cui, H., Deng, H., Kuang, P., Liu, H., Lu, Y., Fang, J., Zuo, Z., Deng, J., Li, Y., & Wang, X. (2017). Histopathological findings of renal tissue induced by oxidative stress due to different concentrations of fluoride. Oncotarget, 8(31), 50430–50446. (PMID: 28881573558414710.18632/oncotarget.17365)
Kazory, A., & Ronco, C. (2019). Hepatorenal syndrome or hepatocardiorenal syndrome: Revisiting basic concepts in view of emerging data. Cardiorenal Medicine, 9(1), 1–7. (PMID: 3022327310.1159/000492791)
Basha, M. P., & Sujitha, N. S. (2011). Chronic fluoride toxicity and myocardial damage: Antioxidant offered protection in second generation rats. Toxicology International, 18(2), 99–104. (PMID: 21976813318363210.4103/0971-6580.84260)
Ameeramja, J., Panneerselvam, L., Govindarajan, V., Jeyachandran, S., Baskaralingam, V., & Perumal, E. (2016). Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. Journal of Hazardous Materials, 301, 554–565. (PMID: 2643993910.1016/j.jhazmat.2015.09.037)
Li, W., Jiang, B., Cao, X., Xie, Y., & Huang, T. (2017). Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated caspase pathways. Chemico-Biological Interactions, 261, 27–34. (PMID: 2787189510.1016/j.cbi.2016.11.021)
Angwa, L. M., Jiang, Y., Pei, J., & Sun, D. (2022). Antioxidant phytochemicals for the prevention of fluoride-induced oxidative stress and apoptosis: A review. Biological Trace Element Research, 200(3), 1418–1441. (PMID: 3400345010.1007/s12011-021-02729-8)
Lu, Y., Luo, Q., Cui, H., Deng, H., Kuang, P., Liu, H., Fang, J., Zuo, Z., Deng, J., Li, Y., & Wang, X. (2017). Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY), 9(6), 1623–1639. (PMID: 2865754410.18632/aging.101257)
Ailani, V., Gupta, R. C., Gupta, S. K., & Gupta, K. (2009). Oxidative stress in cases of chronic fluoride intoxication. Indian Journal of Clinical Biochemistry, 24(4), 426–429. (PMID: 23105872345306010.1007/s12291-009-0076-0)
Shivarajashankara, Y. M., Shivashankara, A. R., Hanumanth Rao, S., & Gopalakrishna, B. P. (2001). Oxidative stress in children with endemic skeletal fluorosis. Fluoride, 34(2), 103–107.
Song, C., Heping, H., Shen, Y., Jin, S., Li, D., Zhang, A., Ren, X., Wang, K., Zhang, L., Wang, J., & Shi, D. (2020). AMPK/p38/Nrf2 activation as a protective feedback to restrain oxidative stress and inflammation in microglia stimulated with sodium fluoride. Chemosphere, 244, 125495. (PMID: 3183756310.1016/j.chemosphere.2019.125495)
Ajuwon, O. R., Marnewick, J. L., Oguntibeju, O. O., & Davids, L. M. (2022). Red palm oil ameliorates oxidative challenge and inflammatory responses associated with lipopolysaccharide-induced hepatic injury by modulating NF-κB and Nrf2/GCL/HO-1 signaling pathways in rats. Antioxidants, 11(8), 1629. (PMID: 36009348940492010.3390/antiox11081629)
Oyagbemi, A. A., Adejumobi, O. A., Jarikre, T. A., Ajani, O. S., Asenuga, E. R., Gbadamosi, I. T., Adedapo, A. D. A., Aro, A. O., Ogunpolu, B. S., Hassan, F. O., & Falayi, O. O. (2022). Clofibrate, a peroxisome proliferator–activated receptor-alpha (PPARα) agonist, and its molecular mechanisms of action against sodium fluoride–induced toxicity. Biological Trace Element Research, 200(3), 1220–1236. (PMID: 3389399210.1007/s12011-021-02722-1)
Caglayan, C., Kandemir, F. M., Darendelioğlu, E., Küçükler, S., & Ayna, A. (2021). Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti-apoptotic and anti-autophagic mechanisms. Life Sciences, 281, 119730. (PMID: 3414748210.1016/j.lfs.2021.119730)
Ridley, W., & Matsuoka, M. (2009). Fluoride-induced cyclooxygenase-2 expression and prostaglandin E2 production in A549 human pulmonary epithelial cells. Toxicology Letters, 188(3), 180–185. (PMID: 1937621410.1016/j.toxlet.2009.04.007)
Saber, T. M., Mansour, M. F., Abdelaziz, A. S., Mohamed, R. M. S., Fouad, R. A., & Arisha, A. H. (2020). Argan oil ameliorates sodium fluoride–induced renal damage via inhibiting oxidative damage, inflammation, and intermediate filament protein expression in male rats. Environmental Science and Pollution Research, 27, 30426–30436. (PMID: 3246262410.1007/s11356-020-09366-z)
Wei, R., Luo, G., Sun, Z., Wang, S., & Wang, J. (2016). Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice. Chemosphere, 153, 419–425. (PMID: 2703180510.1016/j.chemosphere.2016.03.045)
Joubert, E., & de Beer, D. (2011). Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. South African Journal of Botany, 77(4), 869–886. (PMID: 10.1016/j.sajb.2011.07.004)
Stander, M. A., Joubert, E., & De Beer, D. (2019). Revisiting the caffeine-free status of rooibos and honeybush herbal teas using specific MRM and high-resolution LC-MS methods. Journal of Food Composition and Analysis, 76, 39–43. (PMID: 10.1016/j.jfca.2018.12.002)
Shimamura, N., Miyase, T., Umehara, K., Warashina, T., & Fujii, S. (2006). Phytoestrogens from Aspalathus linearis. Biological and Pharmaceutical Bulletin, 29, 1271–1274. (PMID: 1675503210.1248/bpb.29.1271)
Ajuwon, O. R., Ayeleso, A. O., & Adefolaju, G. A. (2018). The potential of South African herbal tisanes, rooibos and honeybush in the management of type 2 diabetes mellitus. Molecules, 23(12), 3207. (PMID: 30563087632161710.3390/molecules23123207)
Joubert, E., Gelderblom, W., & De Beer, D. (2009). Phenolic contribution of South African herbal teas to a healthy diet. Natural Product Communication, 4, 701–718. (PMID: 10.1177/1934578X0900400507)
Marnewick, J. L. (2010). Rooibos and honeybush: Recent advances in chemistry, biological activity and pharmacognosy. In H. Juliani, J. E. Simon, & C. T. Ho (Eds.), African natural plants products New discoveries and challenges in chemistry and quality (ACS Symposium Series) (pp. 277–294). American Chemical Society. (PMID: 10.1021/bk-2009-1021.ch016)
Ajuwon, O. R., Katengua-Thamahane, E., Van Rooyen, J., Oguntibeju, O., & Marnewick, J. L. (2011). The effect of rooibos (Aspalathus linearis) supplementation on tert-butylhydroperoxide-induced oxidative damage in liver and kidney of rats. Free Radical Biology and Medicine, 51, S81–S82. (PMID: 10.1016/j.freeradbiomed.2011.10.385)
Ajuwon, O. R., Katengua-Thamahane, E., Van Rooyen, J., Oguntibeju, O. O., & Marnewick, J. (2013). Protective effects of rooibos (Aspalathus linearis) and/or red palm oil (Elaeis guineensis) supplementation on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in Wistar rats. Evidence-Based Complementary and Alternative Medicine, 2013, 984273. (PMID: 23690869365220310.1155/2013/984273)
Awoniyi, D. O., Aboua, Y. G., Marnewick, J., & Brooks, N. (2012). The effects of rooibos (Aspalathus linearis), green tea (Camellia sinensis) and commercial rooibos and green tea supplements on epididymal sperm in oxidative stress-induced rats. Phytotherapy Research, 26, 1231–1239. (PMID: 2222842210.1002/ptr.3717)
Lawal, A. O., Oluyede, D. M., Adebimpe, M. O., Olumegbon, L. T., Awolaja, O. O., Elekofehinti, O. O., & Crown, O. O. (2019). The cardiovascular protective effects of rooibos (Aspalathus linearis) extract on diesel exhaust particles induced inflammation and oxidative stress involve NF-κB-and Nrf2-dependent pathways modulation. Heliyon, 5(3), e01426. (PMID: 30976698644182810.1016/j.heliyon.2019.e01426)
Pantsi, W. G., Marnewick, J. L., Esterhuyse, A. J., Rautenbach, F., & Van Rooyen, J. (2011). Rooibos (Aspalathus linearis) offers cardiac protection against ischaemia/reperfusion in the isolated perfused rat heart. Phytomedicine, 18(14), 1220–1228. (PMID: 2198243710.1016/j.phymed.2011.09.069)
Marnewick, J. L., Rautenbach, F., Venter, I., Neethling, H., Blackhurst, D. M., Wolmarans, P., & Macharia, M. (2011). Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. Journal of Ethnopharmacology, 133, 46–52. (PMID: 2083323510.1016/j.jep.2010.08.061)
Lawal, A. O., Davids, L. M., & Marnewick, J. L. (2019). Rooibos (Aspalathus linearis) and honeybush (Cyclopia species) modulate the oxidative stress associated injury of diesel exhaust particles in human umbilical vein endothelial cells. Phytomedicine, 59, 152898. (PMID: 3098671510.1016/j.phymed.2019.152898)
Mueller, M., Hobiger, S., & Jungbauer, A. (2010). Anti-inflammatory activity of extracts from fruits, herbs and spices. Food chemistry, 122(4), 987–996. (PMID: 10.1016/j.foodchem.2010.03.041)
Ajuwon, O. R., Oguntibeju, O. O., & Marnewick, J. L. (2014). Amelioration of lipopolysac- charide-induced liver injury by aqueous rooibos (Aspalathus linearis) extract via in- hibition of pro-inflammatory cytokines and oxidative stress. BMC Complementary and Alternative Medicine, 14, 392. (PMID: 25312795420172610.1186/1472-6882-14-392)
Lawal, A. O., & Elekofehinti, O. O. (2019). Real time-quantitative polymerase chain reaction analysis of the anti-inflammatory effect of aqueous rooibos (Aspalathus linearis) extract on diesel exhaust particles-induced hepatic inflammation. Ife Journal of Science, 21(1), 175–186. (PMID: 10.4314/ijs.v21i1.15)
Marnewick, J. L., Joubert, E., Swart, P., van der Westhuizen, F., & Gelderblom, W. C. (2003). Modulation of hepatic drug metabolizing enzymes and oxidative status by rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), green and black (Camellia sinensis) teas in rats. Journal of Agricultural and Food Chemistry, 51, 8113–8119. (PMID: 1469040510.1021/jf0344643)
Chinoy, N. J. (1991). Effects of fluoride on physiology of animals and human beings. Indian Journal of Environmental Toxicology, 1(1), 17–32.
Drury, R. A. B., Wallington, E. A., & Cameron, R. (1976). General staining procedure In Carlenton’s Histological technique. Oxford University Press.
Jun, L., Bo, L., & Langlai, X. (2000). An improved method for the determination of hydrogen peroxide in leaves. Sheng wu hua xue yu Sheng wu wu li jin Zhan, 27(5), 548–551.
Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310. (PMID: 67263310.1016/S0076-6879(78)52032-6)
Boyne, A. F., & Ellman, G. L. (1972). A methodology for analysis of tissue sulfhydryl components. Analytical. Biochemistry, 46(2), 639–653. (PMID: 462350710.1016/0003-2697(72)90335-1)
Tsikas, D. (2005). Review Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radical Research, 39(8), 797–815. (PMID: 1603636010.1080/10715760500053651)
Malin, A. J., Lesseur, C., Busgang, S. A., Curtin, P., Wright, R. O., & Sanders, A. P. (2019). Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013–2016. Environment International, 132, 105012. (PMID: 31402058675477110.1016/j.envint.2019.105012)
Adelakun, S. A., Ogunlade, B., Fidelis, O. P., & Adedotun, O. A. (2022). Cyperus esculentus suppresses hepato-renal oxidative stress, inflammation, and caspase-3 activation following chronic exposure to sodium fluoride in rats’ model. Phytomedicine Plus, 2(1), 100163. (PMID: 10.1016/j.phyplu.2021.100163)
Oyagbemi, A. A., Omobowale, T. O., Asenuga, E. R., Adejumobi, A. O., Ajibade, T. O., Ige, T. M., Ogunpolu, B. S., Adedapo, A. A., & Yakubu, M. A. (2017). Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta. Environmental Toxicology, 32(4), 1089–1101. (PMID: 2737875110.1002/tox.22306)
Vani, M., & L, & Reddy K. P. (2000). Effects of fluoride accumulation on some enzymes of brain and gastrocnemius muscle of mice. Fluoride, 33, 17–27.
Khan, M. U., Basist, P., Zahiruddin, S., Penumallu, N. R., & Ahmad, S. (2024). Ameliorative effect of traditional polyherbal formulation on TNF-α, IL-1β and Caspase-3 expression in kidneys of wistar rats against sodium fluoride induced oxidative stress. Journal of Ethnopharmacology, 318, 116900. (PMID: 3744248910.1016/j.jep.2023.116900)
Adali, M. K., Varol, E., Aksoy, F., Icli, A., Ersoy, I. H., Ozaydin, M., Erdogan, D., & Dogan, A. (2013). Impaired heart rate recovery in patients with endemic fluorosis. Biological Trace Element Research, 152, 310–315. (PMID: 2341749610.1007/s12011-013-9627-6)
Parveen, A., Babbar, R., Agarwal, S., Kotwani, A., & Fahim, M. (2011). Mechanistic clues in the cardioprotective effect of Terminalia arjuna bark extract in isoproterenol-induced chronic heart failure in rats. Cardiovascular Toxicology, 11, 48–57. (PMID: 2111673610.1007/s12012-010-9099-2)
Srivastava, S., & Flora, S. J. S. (2020). Fluoride in drinking water and skeletal fluorosis: A review of the global impact. Current Environmental Health Report, 7, 140–146. (PMID: 10.1007/s40572-020-00270-9)
Egger, M., Dieplinger, B., & Mueller, T. (2017). One-year in vitro stability of cardiac troponins and galectin-3 in different sample types. Clinica Chimica Acta, 476, 117–122. (PMID: 10.1016/j.cca.2017.11.018)
Bartnicki, M., Łyp, P., Dębiak, P., Staniec, M., Winiarczyk, S., Buczek, K., & Adaszek, L. (2017). Cardiac disorders in dogs infected with Babesia canis. Polish Journal of Veterinary Science, 20, 573–581. (PMID: 10.1515/pjvs-2017-0070)
Dludla, P. V., Johnson, R., Mazibuko-Mbeje, S. E., Muller, C. J., Louw, J., Joubert, E., Orlando, P., Silvestri, S., Chellan, N., Nkambule, B. B., & Essop, M. F. (2020). Fermented rooibos extract attenuates hyperglycemia-induced myocardial oxidative damage by improving mitochondrial energetics and intracellular antioxidant capacity. South African Journal of Botany, 131, 143–150. (PMID: 10.1016/j.sajb.2020.02.003)
Smith, J. F., & Hardie, A. G. (2022). Determination of foliar nutrient sufficiency ranges in cultivated rooibos tea using the boundary line approach. South African Journal of Plant and Soil, 39(3), 226–233. (PMID: 10.1080/02571862.2022.2078516)
Akinrinde, A. S., Soetan, K. O., & Tijani, M. O. (2022). Exacerbation of diclofenac-induced gastroenterohepatic damage by concomitant exposure to sodium fluoride in rats: Protective role of luteolin. Drug and Chemical Toxicology, 45(3), 999–1011. (PMID: 3275768210.1080/01480545.2020.1802478)
Checa, J., & Aran, J. M. (2020). Reactive oxygen species: Drivers of physiological and pathological processes. Journal of Inflammation Research, 13, 1057–1073. (PMID: 33293849771930310.2147/JIR.S275595)
Varışlı, B., Darendelioğlu, E., Caglayan, C., Kandemir, F. M., Ayna, A., Genç, A., & Kandemir, Ö. (2022). Hesperidin attenuates oxidative stress, inflammation, apoptosis, and cardiac dysfunction in sodium fluoride-Induced cardiotoxicity in rats. Cardiovascular Toxicology, 22(8), 727–735. (PMID: 3560666610.1007/s12012-022-09751-9)
McGarry, T., Biniecka, M., Veale, D. J., & Fearon, U. (2018). Hypoxia, oxidative stress and inflammation. Free Radical Biology and Medicine, 125, 15–24. (PMID: 2960194510.1016/j.freeradbiomed.2018.03.042)
Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death and Disease, 9(2), 119. (PMID: 29371661583373710.1038/s41419-017-0135-z)
Mosquera-Sulbaran, J. A., Pedreañez, A., Carrero, Y., & Callejas, D. (2021). C-reactive protein as an effector molecule in Covid-19 pathogenesis. Reviews in Medical Virology, 31(6), e2221. (PMID: 34773448799502210.1002/rmv.2221)
Sun, W., Wu, Y., Gao, M., Tian, Y., Qi, P., Shen, Y., Huang, L., Shi, L., Wang, Y., & Liu, X. (2019). C-reactive protein promotes inflammation through TLR4/NF-κB/TGF-β pathway in HL-1 cells. Bioscience Reports, 39(8), BSR20190888. (PMID: 31391207671243710.1042/BSR20190888)
Sproston, N. R., & Ashworth, J. J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology, 9, 754. (PMID: 29706967590890110.3389/fimmu.2018.00754)
Thangapandiyan, S., & Miltonprabu, S. (2014). Epigallocatechin gallate supplementation protects against renal injury induced by fluoride intoxication in rats: Role of Nrf2/HO-1 signaling. Toxicology Reports, 1, 12–30. (PMID: 28962222559820710.1016/j.toxrep.2014.01.002)
Cenesiz, S., Yarim, G. F., Nisbet, C., & Ciftci, G. (2008). Effects of fluoride on C-reactive protein, adenosine deaminase, and ceruloplasmin in rabbit sera. Fluoride, 41(1), 52–56.
Susheela, A. K., & Jethanandani, P. (1994). Serum haptoglobin and C-reactive protein in human skeletal fluorosis. Clinical Biochemistry, 27(6), 463–468. (PMID: 769789210.1016/0009-9120(94)00042-T)
Katengua-Thamahane, E., Marnewick, J. L., Ajuwon, O. R., Chegou, N. N., Szűcs, G., Ferdinandy, P., Csont, T., Csonka, C., & Van Rooyen, J. (2014). The combination of red palm oil and rooibos show anti-inflammatory effects in rats. Journal of Inflammation, 11, 41. (PMID: 25598708429740610.1186/s12950-014-0041-4)
Smith, C., & Swart, A. C. (2016). Rooibos (Aspalathus linearis) facilitates an anti-inflammatory state, modulating IL-6 and IL-10 while not inhibiting the acute glucocorticoid response to a mild novel stressor in vivo. Journal of Functional Foods, 27, 42–54. (PMID: 10.1016/j.jff.2016.08.055)
Lee, W., & Bae, J. S. (2015). Anti-inflammatory effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in vitro and in vivo. Inflammation, 38, 1502–1516. (PMID: 2565539110.1007/s10753-015-0125-1)
Thangaraj, K., & Vaiyapuri, M. (2017). Orientin, a C-glycosyl dietary flavone, suppresses colonic cell proliferation and mitigates NF-κB mediated inflammatory response in 1, 2-dimethylhydrazine induced colorectal carcinogenesis. Biomedicine and Pharmacotherapy, 96, 1253–1266. (PMID: 2919874510.1016/j.biopha.2017.11.088)
Yu, H., Lin, L., Zhang, Z., Zhang, H., & Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduction and Targeted Therapy, 5(1), 209. (PMID: 32958760750654810.1038/s41392-020-00312-6)
Chen, L., Kuang, P., Liu, H., Wei, Q., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2019). Sodium fluoride (NaF) induces inflammatory responses via activating MAPKs/NF-κB signalling pathway and reducing anti-inflammatory cytokine expression in the mouse liver. Biological Trace Element Research, 189, 157–171. (PMID: 3006246210.1007/s12011-018-1458-z)
Yang, W., Liu, L., Li, C., Luo, N., Chen, R., Li, L., Yu, F., & Cheng, Z. (2018). TRIM52 plays an oncogenic role in ovarian cancer associated with NF-kB pathway. Cell Death and Disease, 9(9), 908. (PMID: 30185771612549010.1038/s41419-018-0881-6)
فهرسة مساهمة: Keywords: Cardiorenal toxicity; Inflammation; Oxidative stress; Rooibos; Sodium fluoride
المشرفين على المادة: 8ZYQ1474W7 (Sodium Fluoride)
0 (NF-kappa B)
AYI8EX34EU (Creatinine)
BBX060AN9V (Hydrogen Peroxide)
0 (RNA, Messenger)
0 (Tea)
تواريخ الأحداث: Date Created: 20240205 Date Completed: 20240314 Latest Revision: 20240314
رمز التحديث: 20240314
DOI: 10.1007/s12012-024-09826-9
PMID: 38315346
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0259
DOI:10.1007/s12012-024-09826-9