دورية أكاديمية

Revealing the genome of the microsporidian Vairimorpha bombi, a potential driver of bumble bee declines in North America.

التفاصيل البيبلوغرافية
العنوان: Revealing the genome of the microsporidian Vairimorpha bombi, a potential driver of bumble bee declines in North America.
المؤلفون: Webster VL; Department of Biological Sciences, Royal Holloway University of London, London TW20 0EX, UK., Hemmings S; MRC Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK., Pérez M; Department of Biological Sciences, Royal Holloway University of London, London TW20 0EX, UK., Fisher MC; MRC Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK., Brown MJF; Department of Biological Sciences, Royal Holloway University of London, London TW20 0EX, UK., Farrer RA; MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK.
المصدر: G3 (Bethesda, Md.) [G3 (Bethesda)] 2024 Apr 03; Vol. 14 (4).
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 101566598 Publication Model: Print Cited Medium: Internet ISSN: 2160-1836 (Electronic) Linking ISSN: 21601836 NLM ISO Abbreviation: G3 (Bethesda) Subsets: MEDLINE
أسماء مطبوعة: Publication: 2021- : [Oxford] : Oxford University Press
Original Publication: Bethesda, MD : Genetics Society of America, 2011-
مواضيع طبية MeSH: Ecosystem* , Nosema*/genetics , Microsporidia*, Bees/genetics ; Animals ; Phylogeny ; North America
مستخلص: Pollinators are vital for food security and the maintenance of terrestrial ecosystems. Bumblebees are important pollinators across northern temperate, arctic, and alpine ecosystems, yet are in decline across the globe. Vairimorpha bombi is a parasite belonging to the fungal class Microsporidia that has been implicated in the rapid decline of bumblebees in North America, where it may be an emerging infectious disease. To investigate the evolutionary basis of pathogenicity of V. bombi, we sequenced and assembled its genome using Oxford Nanopore and Illumina technologies and performed phylogenetic and genomic evolutionary analyses. The genome assembly for V. bombi is 4.73 Mb, from which we predicted 1,870 protein-coding genes and 179 tRNA genes. The genome assembly has low repetitive content and low GC content. V. bombi's genome assembly is the smallest of the Vairimorpha and closely related Nosema genera, but larger than those found in the Encephalitozoon and Ordospora sister clades. Orthology and phylogenetic analysis revealed 18 core conserved single-copy microsporidian genes including the histone acetyltransferase (HAT) GCN5. Surprisingly, V. bombi was unique to the microsporidia in not encoding the second predicted HAT ESA1. The V. bombi genome assembly annotation included 265 unique genes (i.e. not predicted in other microsporidia genome assemblies), 20% of which encode a secretion signal, which is a significant enrichment. Intriguingly, of the 36 microsporidian genomes we analyzed, 26 also had a significant enrichment of secreted signals encoded by unique genes, ranging from 6 to 71% of those predicted genes. These results suggest that microsporidia are under selection to generate and purge diverse and unique genes encoding secreted proteins, potentially contributing to or facilitating infection of their diverse hosts. Furthermore, V. bombi has 5/7 conserved spore wall proteins (SWPs) with its closest relative V. ceranae (that primarily infects honeybees), while also uniquely encoding four additional SWPs. This gene class is thought to be essential for infection, providing both environmental protection and recognition and uptake into the host cell. Together, our results show that SWPs and unique genes encoding a secretion signal are rapidly evolving in the microsporidia, suggesting that they underpin key pathobiological traits including host specificity and pathogenicity.
Competing Interests: Conflicts of interest. The author(s) declare no conflicts of interest.
(© The Author(s) 2024. Published by Oxford University Press on behalf of The Genetics Society of America.)
References: Curr Protoc. 2021 Dec;1(12):e323. (PMID: 34936221)
BMC Genomics. 2013 Jul 05;14:451. (PMID: 23829473)
Bioinformatics. 2008 Aug 15;24(16):1757-64. (PMID: 18567917)
Front Microbiol. 2020 Feb 18;11:172. (PMID: 32132983)
Nat Methods. 2011 Sep 29;8(10):785-6. (PMID: 21959131)
Front Microbiol. 2020 Jun 26;11:1468. (PMID: 32670257)
F1000Res. 2020 Apr 28;9:304. (PMID: 32489650)
Int J Parasitol. 2005 Aug;35(9):941-53. (PMID: 16005007)
PLoS One. 2014 Nov 19;9(11):e112963. (PMID: 25409509)
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5. (PMID: 12883005)
Elife. 2022 Jan 07;11:. (PMID: 34994689)
BMC Genomics. 2007 Sep 04;8:309. (PMID: 17784954)
PLoS Pathog. 2009 Jun;5(6):e1000466. (PMID: 19503607)
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9. (PMID: 16845043)
Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3561-5. (PMID: 9520405)
J Invertebr Pathol. 2020 Jan;169:107279. (PMID: 31738888)
Mol Biol Evol. 2000 Jan;17(1):32-43. (PMID: 10666704)
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):662-7. (PMID: 21199943)
Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5. (PMID: 18940856)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
Bioinformatics. 2014 May 1;30(9):1312-3. (PMID: 24451623)
Nucleic Acids Res. 1997 Mar 1;25(5):955-64. (PMID: 9023104)
Proc Biol Sci. 2021 May 26;288(1951):20210363. (PMID: 34034519)
Nucleic Acids Res. 2011 Jan;39(Database issue):D612-9. (PMID: 20974635)
Front Microbiol. 2021 Jun 02;12:645353. (PMID: 34149635)
Int J Parasitol. 2021 Sep;51(10):855-864. (PMID: 33891934)
Mol Biol Evol. 2007 Aug;24(8):1586-91. (PMID: 17483113)
J Invertebr Pathol. 2015 Sep;130:165-8. (PMID: 26248064)
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457. (PMID: 32300014)
J Econ Entomol. 2004 Aug;97(4):1384-9. (PMID: 15384352)
Eukaryot Cell. 2007 Aug;6(8):1354-62. (PMID: 17557882)
J Exp Biol. 2020 Mar 25;223(Pt 6):. (PMID: 32107305)
BMC Bioinformatics. 2017 Nov 21;18(1):507. (PMID: 29162056)
Genome Res. 2017 May;27(5):722-736. (PMID: 28298431)
J Invertebr Pathol. 2007 Oct;96(2):118-24. (PMID: 17482641)
Genome Res. 2003 Sep;13(9):2178-89. (PMID: 12952885)
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4386-91. (PMID: 27044096)
NAR Genom Bioinform. 2021 Jan 06;3(1):lqaa108. (PMID: 33575650)
PLoS Pathog. 2020 Jun 18;16(6):e1008580. (PMID: 32555676)
Bioinformatics. 2005 Sep 15;21(18):3674-6. (PMID: 16081474)
Bioinformatics. 2018 Aug 1;34(15):2666-2669. (PMID: 29547981)
Nucleic Acids Res. 1998 Feb 15;26(4):1107-15. (PMID: 9461475)
Bioinformatics. 2011 Apr 15;27(8):1164-5. (PMID: 21335321)
Microb Genom. 2017 Sep 14;3(10):e000132. (PMID: 29177090)
Bioinformatics. 2013 Apr 15;29(8):1072-5. (PMID: 23422339)
BMC Bioinformatics. 2004 Aug 19;5:113. (PMID: 15318951)
Bioinformatics. 2009 Aug 1;25(15):1972-3. (PMID: 19505945)
Methods Mol Biol. 2021;2231:17-37. (PMID: 33289884)
Nucleic Acids Res. 2007;35(9):3100-8. (PMID: 17452365)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; MR/V033417/1 United Kingdom MRC_ Medical Research Council; MR/N006364/2 United Kingdom MRC_ Medical Research Council; 225303/Z/22/Z United Kingdom WT_ Wellcome Trust; MR/MR/R015600/1 United Kingdom MRC_ Medical Research Council
فهرسة مساهمة: Keywords: Vairimorpha bombi; genome assembly; histone acetyltransferase; microsporidia; secretome; spore wall proteins
سلسلة جزيئية: figshare 10.6084/m9.figshare.24354313
SCR Organism: Vairimorpha cheracis
تواريخ الأحداث: Date Created: 20240209 Date Completed: 20240404 Latest Revision: 20240520
رمز التحديث: 20240521
مُعرف محوري في PubMed: PMC10989860
DOI: 10.1093/g3journal/jkae029
PMID: 38334143
قاعدة البيانات: MEDLINE
الوصف
تدمد:2160-1836
DOI:10.1093/g3journal/jkae029