دورية أكاديمية

Broad protection against clade 1 sarbecoviruses after a single immunization with cocktail spike-protein-nanoparticle vaccine.

التفاصيل البيبلوغرافية
العنوان: Broad protection against clade 1 sarbecoviruses after a single immunization with cocktail spike-protein-nanoparticle vaccine.
المؤلفون: Halfmann PJ; Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA., Loeffler K; School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA., Duffy A; School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA., Kuroda M; Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA., Yang JE; Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA.; Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, 53706, USA.; Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, 53706, USA., Wright ER; Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA.; Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, 53706, USA.; Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, 53706, USA., Kawaoka Y; Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA. yoshihiro.kawaoka@wisc.edu.; Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan. yoshihiro.kawaoka@wisc.edu.; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan. yoshihiro.kawaoka@wisc.edu.; Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, 162-8655, Japan. yoshihiro.kawaoka@wisc.edu., Kane RS; School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. ravi.kane@chbe.gatech.edu.; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. ravi.kane@chbe.gatech.edu.
المصدر: Nature communications [Nat Commun] 2024 Feb 12; Vol. 15 (1), pp. 1284. Date of Electronic Publication: 2024 Feb 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Nanovaccines* , Severe acute respiratory syndrome-related coronavirus*, Animals ; Cricetinae ; Humans ; Female ; Angiotensin-Converting Enzyme 2 ; Vaccination ; Immunization ; Antibodies, Neutralizing ; Antibodies, Viral
مستخلص: The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protect female hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicit highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protects human ACE2-transgenic female hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.
(© 2024. The Author(s).)
التعليقات: Update of: Res Sq. 2023 Jun 29;:. (PMID: 37461652)
References: Chi, W.-Y. et al. COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. J. Biomed. Sci. 29, 82 (2022). (PMID: 36243868956941110.1186/s12929-022-00853-8)
Voysey, M. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99–111 (2021). (PMID: 33306989772344510.1016/S0140-6736(20)32661-1)
Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl. J. Med. 383, 2603–2615 (2020). (PMID: 3330124610.1056/NEJMoa2034577)
Sadoff, J. et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl. J. Med. (2021). https://doi.org/10.1056/NEJMoa2101544 .
Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl. J. Med. 384, 403–416 (2021). (PMID: 3337860910.1056/NEJMoa2035389)
Dunkle, L. M. et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl. J. Med. 386, 531–543 (2021). (PMID: 3491085910.1056/NEJMoa2116185)
Huang, Y., Yang, C., Xu, X. F., Xu, W. & Liu, S. W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 41, 1141–1149 (2020). (PMID: 32747721739672010.1038/s41401-020-0485-4)
Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211 (2021). (PMID: 3400208910.1038/s41591-021-01377-8)
Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell https://doi.org/10.1016/j.cell.2022.12.018 .
Khan, K. et al. Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection. Nature Communications 13, 4686 (2022).
Tuekprakhon, A. et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell (2022). https://doi.org/10.1016/j.cell.2022.06.005 .
Temmam, S. et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 604, 330–336 (2022). (PMID: 3517232310.1038/s41586-022-04532-4)
Ng, K. W. et al. SARS-CoV-2 S2–targeted vaccination elicits broadly neutralizing antibodies. Sci. Transl. Med. 14, eabn3715 (2022). (PMID: 3589583610.1126/scitranslmed.abn3715)
Halfmann, P. J. et al. Multivalent S2-based vaccines provide broad protection against SARS-CoV-2 variants of concern and pangolin coronaviruses. eBioMedicine 86 (2022). https://doi.org/10.1016/j.ebiom.2022.104341 .
Link-Gelles, R. et al. Effectiveness of bivalent mRNA vaccines in preventing symptomatic SARS-CoV-2 Infection — increasing community access to testing program, United States, September–November 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 1526–1530 (2022). (PMID: 36454688972114810.15585/mmwr.mm7148e1)
Wang, Q. et al. Antibody response to omicron BA.4–BA.5 Bivalent Booster. N Engl. J. Med. (2023). https://doi.org/10.1056/NEJMc2213907 .
Hoffmann, M. et al. Effect of hybrid immunity and bivalent booster vaccination on omicron sublineage neutralisation. Lancet Infect. Dis. 23, 25–28 (2023). (PMID: 3648094410.1016/S1473-3099(22)00792-7)
Davis-Gardner, M. E. et al. Neutralization against BA.2.75.2, BQ.1.1, and XBB from mRNA Bivalent Booster. N Engl. J. Med. 388, 183–185 (2022). (PMID: 3654666110.1056/NEJMc2214293)
Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. (2022). https://doi.org/10.1038/s41591-022-02162-x .
Tan, C.-W. et al. Pan-Sarbecovirus Neutralizing Antibodies in BNT162b2-Immunized SARS-CoV-1 Survivors. N Engl. J. Med. 385, 1401–1406 (2021). (PMID: 3440734110.1056/NEJMoa2108453)
Cohen, A. A. et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science 371, 735 (2021). (PMID: 33436524792883810.1126/science.abf6840)
Cohen, A. A. et al. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 377, eabq0839 (2022). (PMID: 3585762010.1126/science.abq0839)
Du, P. et al. A bivalent vaccine containing D614G and BA.1 spike trimer proteins or a BA.1 spike trimer protein booster shows broad neutralizing immunity. J. Med. Virol. 94, 4287–4293 (2022). (PMID: 3561452410.1002/jmv.27885)
Brinkkemper, M. et al. Co-display of diverse spike proteins on nanoparticles broadens sarbecovirus neutralizing antibody responses. iScience 25, 105649 (2022). (PMID: 36439375967881410.1016/j.isci.2022.105649)
Brouwer, P. J. M. et al. Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell 184, 1188–1200.e1119 (2021). (PMID: 33577765783497210.1016/j.cell.2021.01.035)
Joyce, M. G. et al. A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Sci. Transl. Med. 14, eabi5735 (2022). (PMID: 3491454010.1126/scitranslmed.abi5735)
Weidenbacher, P. A. B. et al. A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. Nat. Commun. 14, 2149 (2023). (PMID: 370691511011061610.1038/s41467-023-37417-9)
Hutchinson, G. B. et al. Nanoparticle display of prefusion coronavirus spike elicits S1-focused cross-reactive antibody response against diverse coronavirus subgenera. Nat. Commun. 14, 6195 (2023). (PMID: 377940711055100510.1038/s41467-023-41661-4)
Chiba, S. et al. Multivalent nanoparticle-based vaccines protect hamsters against SARS-CoV-2 after a single immunization. Commun. Biol. 4 (2021). https://doi.org/10.1038/s42003-021-02128-8 .
Starr, T. N. et al. ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. Nature 603, 913–918 (2022). (PMID: 35114688896771510.1038/s41586-022-04464-z)
Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013). (PMID: 24172901538986410.1038/nature12711)
Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015). (PMID: 26552008479799310.1038/nm.3985)
Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562–569 (2020). (PMID: 32094589709543010.1038/s41564-020-0688-y)
Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020). (PMID: 3270390610.1126/science.abd0826)
Frietze, K. M., Peabody, D. S. & Chackerian, B. Engineering virus-like particles as vaccine platforms. Curr. Opin. Virol. 18, 44–49 (2016). (PMID: 27039982498349410.1016/j.coviro.2016.03.001)
Ke, Z. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588, 498–502 (2020). (PMID: 32805734711649210.1038/s41586-020-2665-2)
Simon-Loriere, E. & Schwartz, O. Towards SARS-CoV-2 serotypes? Nat. Rev. Microbiol. 20, 187–188 (2022). (PMID: 35181769885575110.1038/s41579-022-00708-x)
Rössler, A. et al. BA.2 and BA.5 omicron differ immunologically from both BA.1 omicron and pre-omicron variants. Nat. Commun. 13, 7701 (2022). (PMID: 36513653974527910.1038/s41467-022-35312-3)
Feng, S. et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 27, 2032–2040 (2021). (PMID: 34588689860472410.1038/s41591-021-01540-1)
Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022). (PMID: 36302057979890310.1126/science.abo2523)
Baldeon Vaca, G. et al. Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection. Sci. Adv. 9, eadh1655 (2023). (PMID: 377383341051649410.1126/sciadv.adh1655)
Zhang, X. et al. A mosaic nanoparticle vaccine elicits potent mucosal immune response with significant cross-protection activity against multiple SARS-CoV-2 Sublineages. Adv. Sci. 10, 2301034 (2023). (PMID: 10.1002/advs.202301034)
Deng, S. et al. An intranasal influenza virus-vectored vaccine prevents SARS-CoV-2 replication in respiratory tissues of mice and hamsters. Nat. Commun. 14, 2081 (2023). (PMID: 370458731009294010.1038/s41467-023-37697-1)
Langel, S. N. et al. Adenovirus type 5 SARS-CoV-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model. Sci. Transl. Med. 14, eabn6868 https://doi.org/10.1126/scitranslmed.abn6868 .
Guo, H. et al. ACE2-independent bat sarbecovirus entry and replication in human and bat cells. mBio 13, e02566–02522 (2022). (PMID: 36409074976540710.1128/mbio.02566-22)
Khaledian, E. et al. Sequence determinants of human-cell entry identified in ACE2-independent bat sarbecoviruses: a combined laboratory and computational network science approach. eBioMedicine 79, 103990 (2022). (PMID: 35405384898947410.1016/j.ebiom.2022.103990)
Roelle, S. M., Shukla, N., Pham, A. T., Bruchez, A. M. & Matreyek, K. A. Expanded ACE2 dependencies of diverse SARS-like coronavirus receptor binding domains. PLOS Biol. 20, e3001738 (2022). (PMID: 35895696935957210.1371/journal.pbio.3001738)
Product Evaluation Group, W. H. O. Recommendation for an Emergency Use Listing of SKYCovione (GBP510) submitted by SK Bioscience Co Ltd. (2023). https://extranet.who.int/prequal/sites/default/files/document_files/SKYCovione_PEG-TAG_August2023.pdf .
Francis, T. On the doctrine of original antigenic sin. Proc. Am. Philos Soc. 104, 572–578 (1960).
de St.Groth, S. F. & Webster, R. G. Disquisitions on original antigenic sin: I. evidence in maN. J. Exp. Med. 124, 331–345 (1966). (PMID: 213823510.1084/jem.124.3.331)
de St.Groth, S. F. & Webster, R. G. Disquisitions on original antigenic siN: II. proof in lower creatureS. J. Exp. Med. 124, 347–361 (1966). (PMID: 213822910.1084/jem.124.3.347)
Fairhead, M., Krndija, D., Lowe, E. D. & Howarth, M. Plug-and-play pairing via defined divalent streptavidins. J. Mol. Biol. 426, 199–214 (2014). (PMID: 24056174404782610.1016/j.jmb.2013.09.016)
Howarth, M. & Ting, A. Y. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3, 534–545 (2008). (PMID: 18323822267120010.1038/nprot.2008.20)
ter Meulen, J. et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLOS Med. 3, e237 (2006). (PMID: 16796401148391210.1371/journal.pmed.0030237)
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020). (PMID: 3242264510.1038/s41586-020-2349-y)
Pinto, D. et al. Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science 373, 1109–1116 (2021). (PMID: 34344823926835710.1126/science.abj3321)
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). (PMID: 1618256310.1016/j.jsb.2005.07.007)
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. 117, 16587–16595 (2020). (PMID: 32571934736825510.1073/pnas.2009799117)
Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl. Acad. Sci. USA 113, 3048–3053 (2016). (PMID: 26976607480124410.1073/pnas.1517719113)
Golden, J. W. et al. Hamsters Expressing human angiotensin-converting Enzyme 2 develop severe disease following exposure to SARS-CoV-2. mBio 13, e02906–e02921 (2022). (PMID: 35073750878746510.1128/mbio.02906-21)
Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004). (PMID: 1521809410.1126/science.1097211)
معلومات مُعتمدة: P01 AI165077 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Nanovaccines)
EC 3.4.17.23 (Angiotensin-Converting Enzyme 2)
0 (Antibodies, Neutralizing)
0 (Antibodies, Viral)
تواريخ الأحداث: Date Created: 20240212 Date Completed: 20240214 Latest Revision: 20240226
رمز التحديث: 20240226
مُعرف محوري في PubMed: PMC10861510
DOI: 10.1038/s41467-024-45495-6
PMID: 38346966
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-45495-6