دورية أكاديمية

Urban noise assessment in hospitals: measurements and mapping in the context of the city of Sorocaba, Brazil.

التفاصيل البيبلوغرافية
العنوان: Urban noise assessment in hospitals: measurements and mapping in the context of the city of Sorocaba, Brazil.
المؤلفون: Andrade EL; São Paulo State University (UNESP) - Institute of Science and Technology of Sorocaba, Avenida Três de Março, 511 - Alto da Boa Vista, Sorocaba, São Paulo, 18.087-180, Brazil. eng.erik@hotmail.com., de Lima EA; São Paulo State University (UNESP) - Institute of Science and Technology of Sorocaba, Avenida Três de Março, 511 - Alto da Boa Vista, Sorocaba, São Paulo, 18.087-180, Brazil., Martins ACG; São Paulo State University (UNESP) - Institute of Science and Technology of Sorocaba, Avenida Três de Março, 511 - Alto da Boa Vista, Sorocaba, São Paulo, 18.087-180, Brazil., Zannin PHT; Federal University of Paraná - Laboratory of Environmental and Industrial Acoustics and Acoustic Comfort, Curitiba, Paraná, Brazil., da Cunha E Silva DC; São Paulo State University (UNESP) - Institute of Science and Technology of Sorocaba, Avenida Três de Março, 511 - Alto da Boa Vista, Sorocaba, São Paulo, 18.087-180, Brazil.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2024 Feb 14; Vol. 196 (3), pp. 267. Date of Electronic Publication: 2024 Feb 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Noise* , Environmental Monitoring*/methods, Cities ; Brazil ; Acoustics
مستخلص: Noise pollution has become a public health problem in several countries worldwide. Noise maps are tools used in many cities, mainly on the European continent. In other regions, they are used in smaller areas, and few studies focus on hospital areas, considered noise-sensitive zones. In this context, this study aimed to perform sound measurements and noise maps for the day and night periods in the surroundings of three hospitals in Sorocaba, Brazil. Sound measurements occurred around the three hospitals based on NBR 10151 and ISO 1996 standards. The noise maps were drawn up using a calculation model based on ISO 9613-2. Results showed that the sound measurement points around the hospitals had levels above those recommended by the Brazilian standard for sensitive areas (L Aeq 50 and 45 dB for day and night, respectively). The acoustic maps showed high sound levels on all faces of the hospital buildings, both during the day and at night. The worst scenario concerned the vicinity of the roads with the highest flow and speed of vehicles. We concluded that three different hospitals in the city have high sound levels in their surroundings above the recommended for sensitive areas.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: ABNT. (2020). Associação Brasileira de Normas Técnicas. NBR 10151:2020. Acoustics — Measurement and evaluation of sound pressure levels in inhabited environments — Application for general use. Rio de Janeiro, 2020.
Andrade, E. L., Silva, D. C. C., Lima, E. A., Oliveira, R. A., Zannin, P. H. T., & Martins, A. C. G. (2021c). Environmental noise in hospitals: A systematic review. Environmental Science and Pollution Research, 28, 19629–19642. https://doi.org/10.1007/s11356-021-13211-2. (PMID: 10.1007/s11356-021-13211-2)
Andrade, E. L., Lima, E. A., Simonetti, V. C., Oliveira, R. A., Zannin, P. H. T., Silva, D. C. C., & Martins, A. C. G. (2021a). Influence of the COVID-19 pandemic on the external environmental noise of a public hospital in Sorocaba, Brazil. Revista Nacional de Gerenciamento de Cidades, 9, 44–51. https://doi.org/10.17271/2318847296920212790.
Andrade, E. L., Lima, E. A., & Zannin, P. H. T. (2021b). Impact of noise pollution during the COVID-19 pandemic in a hospital area in Sorocaba city, São Paulo State, Brazil. Revista Nacional de Gerenciamento de Cidades, 9, 16–23. https://doi.org/10.17271/2318847297120212915.
APA (2020). Portuguese Environment Agency. Practical guide for ambient noise measurements – in the context of the General Noise Regulation taking into account NP ISO 1996. July 2020. Available in: https://apambiente.pt/sites/default/files/_SNIAMB_Ar_Ruido/Ruido/Notas%20t%C3%A9cnicas%20e%20guias%20de%20Ru%C3%ADdo/GUIApraticoparamedicoesderuidoambiente_2020_2.pdf . Accessed 23 June 2022.
ASF (2022). Alaska Satellite Facility. ALOS PALSAR. Retrieved from ASF [2022.05.01]. Available in: https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/ . Accessed  1 May 2022.
Bevan, R., Grantham-Hill, S., Bowen, R., Clayton, E., Grice, H., Venditti, H. C., Stickland, A., & Hill, C. M. (2018). Sleep quality and noise: Comparisons between hospital and home settings. Archives of Disease in Childhood, 104, 147–151. https://doi.org/10.1136/archdischild-2018-315168. (PMID: 10.1136/archdischild-2018-31516830018067)
Bunn, F., & Zannin, P. H. T. (2016). Assessment of railway noise in an urban setting. Applied Acoustics, 104, 16–23. https://doi.org/10.1016/j.apacoust.2015.10.025. (PMID: 10.1016/j.apacoust.2015.10.025)
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. New York. https://doi.org/10.4324/9780203771587.
Çolakkadioğlu, D., & Yücel, M. (2017). Modeling of Tarsus-Adana-Gaziantep highway-induced noise pollution within the scope of Adana city and estimated the affected population. Applied Acoustics, 115, 158–165. https://doi.org/10.1016/j.apacoust.2016.08.029. (PMID: 10.1016/j.apacoust.2016.08.029)
Çolakkadioğlu, D., Yücel, M., Kahveci, B., & Aydinol, Ö. (2018). Determination of noise pollution on university campuses: A case study at Çukurova University campus in Turkey. Environmental Monitoring and Assessment, 190, 203. https://doi.org/10.1007/s10661-018-6568-8. (PMID: 10.1007/s10661-018-6568-829523977)
CTB (1997). Brazilian Traffic Code, 1997. Available in: http://www.planalto.gov.br/ccivil_03/leis/L9503.htm . Accessed 1 May 2022.
WHO (2009). WHO night noise guidelines for Europe, WHO Regional Office for Europe, Copenhagen. Available in: https://www.euro.who.int/__data/assets/pdf_file/0017/43316/E92845.pdf . Accessed 1 May 2022.
END. (2002). European Parliament and Council of the European Union. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise. Official Journal of the European Communities.
Fan, Y., Liang, J., Cao, X., Pang, L., & Zhang, J. (2022). Effects of noise exposure and mental workload on physiological responses during task execution. International Journal of Environmental Research and Public Health, 19, 12434. https://doi.org/10.3390/ijerph191912434. (PMID: 10.3390/ijerph191912434362317369566815)
Fiedler, P. E. K., & Zannin, P. H. T. (2015). Evaluation of noise pollution in urban traffic hubs-Noise maps and measurements. Environmental Impact Assessment Review, 51, 1–9. https://doi.org/10.1016/j.eiar.2014.09.014. (PMID: 10.1016/j.eiar.2014.09.014)
Freitas, E., Mendonça, C., Santos, J. A., Murteira, C., & Ferreira, J. P. (2012). Traffic noise abatement : How different pavements, vehicle speeds and traffic densities affect annoyance levels. Transportation Research Part D, 17, 321–326. https://doi.org/10.1016/j.trd.2012.02.001. (PMID: 10.1016/j.trd.2012.02.001)
Golmohammadi, R., Darvishi, E., Shafiee Motlagh, M., Faradmal, J., Aliabadi, M., & Rodrigues, M. A. (2022). Prediction of occupational exposure limits for noise-induced non-auditory effects. Applied Ergonomics, 99, 103641. https://doi.org/10.1016/j.apergo.2021.103641. (PMID: 10.1016/j.apergo.2021.10364134768225)
Gozalo, G. R., & Escobar, V. G. (2021). Uncertainty evaluation of road traffic noise models in two Ibero-American cities. Applied Acoustics, 180, 108132. https://doi.org/10.1016/j.apacoust.2021.108134. (PMID: 10.1016/j.apacoust.2021.108134)
Gozalo, G. R., Escobar, V. G., Morillas, J. M. B., Gonzales, D. M., & Moraga, P. A. (2019). Statistical attribution of errors in urban noise modeling. Applied Acoustics, 153, 20–29. https://doi.org/10.1016/j.apacoust.2019.04.001. (PMID: 10.1016/j.apacoust.2019.04.001)
Gozalo, G. R., Suárez, E., Montenegro, A. L., Arenas, J. P., Morillas, J. M. B., & González, D. M. (2020). Noise estimation using road and urban features. Sustainability., 12, 1–18. https://doi.org/10.3390/su12219217. (PMID: 10.3390/su12219217)
Guski, R., Schreckenberg, D., & Schuemer, R. (2017). WHO environmental noise guidelines for the European region: A systematic review on environmental noise and annoyance. International Journal of Environmental Research and Public Health, 14, 1–39. https://doi.org/10.3390/ijerph14121539. (PMID: 10.3390/ijerph14121539)
Hagerman, I., Rasmanis, G., Blomkvist, V., Ulrich, R., Anne Eriksen, C., & Theorell, T. (2005). Influence of intensive coronary care acoustics on the quality of care and physiological state of patients. International Journal of Cardiology, 98, 267–270. https://doi.org/10.1016/j.ijcard.2003.11.006. (PMID: 10.1016/j.ijcard.2003.11.00615686777)
Hahad, O., Kröller-Schön, S., Daiber, A., & Münzel, T. (2019). The cardiovascular effects of noise. Deutsches Arzteblatt International, 116, 245–250. https://doi.org/10.3238/arztebl.2019.0245. (PMID: 10.3238/arztebl.2019.0245310923126541745)
Halonen, J. I., Hansell, A. L., Gulliver, J., Morley, D., Blangiardo, M., Fecht, D., Toledano, M. B., Beevers, S. D., Anderson, H. R., Kelly, F. J., & Tonne, C. (2015). Road traffic noise is associated with increased cardiovascular morbidity and mortality and all-cause mortality in London. European Heart Journal, 36, 2653–2661. https://doi.org/10.1093/eurheartj/ehv216. (PMID: 10.1093/eurheartj/ehv216261043924604259)
Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologia Eletrônica, p.9 Available in: http://folk.uio.no/ohammer/past/ . Accessed 20 May 2022.
Hänninen, O., Knol, A. B., Jantunen, M., Lim, T. A., Conrad, A., Rappolder, M., Carrer, P., Fanetti, A. C., Kim, R., Buekers, J., Torfs, R., Iavarone, I., Classen, T., Hornberg, C., Mekel, O. C., & EBoDE Working Group (2014). Environmental burden of disease in Europe: assessing nine risk factors in six countries. Environmental Health Perspectives. 122, 439–446. https://doi.org/10.1289/ehp.1206154.
Horsten, S., Reinke, L., Absalom, A. R., & Tulleken, J. E. (2018). Systematic review of the effects of intensive-care-unit noise on sleep of healthy subjects and the critically ill. British Journal of Anaesthesia, 120, 443–452. https://doi.org/10.1016/j.bja.2017.09.006. (PMID: 10.1016/j.bja.2017.09.00629452801)
IBGE. (2021). Instituto Brasileiro de Geografia e Estatística. Sorocaba Population Estimate, 2021. Available in: https://cidades.ibge.gov.br/brasil/sp/sorocaba/panorama . Accessed 29 May 2022.
ISO 9613–2. (1996). Acoustics - Attenuation of sound during propagation outdoors - Part 2: General method of calculation. Switzerland.
ISO 1996–1. (2016). Acoustics - Description, measurement and assessment of environmental noise - Part 1: Basic quantities and assessment procedures. Switzerland.
ISO 1996–2. (2017). Acoustics - Description, measurement and assessment of environmental noise - Part 2: Determination of sound pressure levels. Switzerland.
Jassim, U. T., & Ebrahim, S. M. (2020). Understanding medication errors as leading factors amongst nursing staff working at Basra city. International Journal of Innovation, Creativity and Change, 13(6), 606–615.
Khosravipour, M., & Khanlari, P. (2020). The association between road traffic noise and myocardial infarction : A systematic review and meta-analysis. Science of the Total Environment, 731, 139226. https://doi.org/10.1016/j.scitotenv.2020.139226. (PMID: 10.1016/j.scitotenv.2020.13922632422434)
Licitra, G., Cerchiai, M., Teti, L., Ascari, E., Bianco, F., & Chetoni, M. (2015). Performance assessment of low-noise road surfaces in the Leopoldo project: Comparison and validation of different measurement methods. Coatings, 5, 3–25. https://doi.org/10.3390/coatings5010003. (PMID: 10.3390/coatings5010003)
Licitra, G., Fredianelli, L., Petri, D., & Vigotti, M. A. (2016). Annoyance evaluation due to overall railway noise and vibration in Pisa urban areas. Science of the Total Environment, 568, 1315–1325. https://doi.org/10.1016/j.scitotenv.2015.11.071. (PMID: 10.1016/j.scitotenv.2015.11.07126775834)
Licitra, G., Moro, A., Teti, L., Del Pizzo, L. G., & Bianco, F. (2019). Modelling of acoustic ageing of rubberized pavements. Applied Acoustics, 146, 237–245. https://doi.org/10.1016/j.apacoust.2018.11.009. (PMID: 10.1016/j.apacoust.2018.11.009)
Licitra G., & Memoli, G. (2008). Limits and advantages of good practice guide to noise mapping. The Journal of the Acoustical Society of America, 123, 3033.  https://doi.org/10.1121/1.2932687.
Lokhande, S. K., Dhawale, S. A., Pathak, S. S., Gautam, R., Jain, M. C., & Bodhe, G. L. (2017). Appraisal of noise level dissemination surrounding mining and industrial areas of Keonjhar, Odisha: A comprehensive approach using noise mapping. Archives of Acoustics, 42, 423–432. https://doi.org/10.1515/aoa-2017-0044. (PMID: 10.1515/aoa-2017-0044)
Loupa, G. (2020). Influence of noise on patient recovery. Current Pollution Reports, 6, 1–7. https://doi.org/10.1007/s40726-019-00134-3.
BING MAPS. (2022). Sorocaba-São Paulo. [S. l.]. Available in: https://www.bing.com/maps?toWww=1&redig=1B73B6D824A4440FACB09DB60EDBEF62&cp=-23.504468%7E-47.452949&lvl=15.2&style=a . Accessed 1 May 2022.
Miedema, H. M. E., & Oudshoorn, C. G. M. (2001). Annoyance from transportation noise: Relationships with exposure metrics DNL and DENL and their confidence intervals. Environmental Health Perspectives, 109, 409–416. https://doi.org/10.1289/ehp.01109409. (PMID: 10.1289/ehp.01109409113351901240282)
Mioduszewski, P., Ejsmont, J. A., Grabowski, J., & Karpinski, D. (2011). Noise map validation by continuous noise monitoring. Applied Acoustics, 72, 582–589. https://doi.org/10.1016/j.apacoust.2011.01.012. (PMID: 10.1016/j.apacoust.2011.01.012)
Montes-González, D., Barrigón-Morillas, J. M., Escobar, V. G., Vílchez-Gómez, R., Rey-Gozalo, G., Atanasio-Moraga, P., & Méndez-Sierra, J. A. (2019). Environmental noise around hospital areas: A case study. Environments, 6, 41. https://doi.org/10.3390/environments6040041.
Morillas, J. M. B., González, D. M., Escobar, V. G., Gozalo, G. R., & Vílchez-Gómez, R. (2021). A proposal for producing calculated noise mapping defining the sound power levels of roads by street stratification. Environ. Pol., 270, 116080. https://doi.org/10.1016/j.envpol.2020.116080. (PMID: 10.1016/j.envpol.2020.116080)
Murphy, E., & King, E. A. (2010). Strategic environmental noise mapping: Methodological issues concerning the implementation of the EU Environmental Noise Directive and their policy implications. Environment International, 36, 290–298. https://doi.org/10.1016/j.envint.2009.11.006. (PMID: 10.1016/j.envint.2009.11.00620045195)
 Murphy, E. & King, E.A. (2011). Scenario analysis and noise action planning: Modelling the impact of mitigation measures on population exposure. Applied Acoustics, 72(8), 487–494. https://doi.org/10.1016/j.apacoust.2010.10.006.
Nascimento, E. O., Oliveira, F. L., Oliveira, L. N., & Zannin, P. H. T. (2021). Noise prediction based on acoustic maps and vehicle fleet composition. Applied Acoustics, 174, 107803. https://doi.org/10.1016/j.apacoust.2020.107803. (PMID: 10.1016/j.apacoust.2020.107803)
Paiva, K. M., Cardoso, M. R. A., & Zannin, P. H. T. (2019). Exposure to road traffic noise: Annoyance, perception and associated factors among Brazil’s adult population. Science of the Total Environment, 650, 978–986. https://doi.org/10.1016/j.scitotenv.2018.09.041. (PMID: 10.1016/j.scitotenv.2018.09.04130308872)
Praticò, F. G. (2014). On the dependence of acoustic performance on pavement characteristics. Transportation Research Part d: Transport and Environment, 29, 79–87. https://doi.org/10.1016/j.trd.2014.04.004. (PMID: 10.1016/j.trd.2014.04.004)
Praticò, F. G., & Anfosso-Lédée, F. (2012). Trends and issues in mitigating traffic noise through quiet pavements. Procedia – Soc. Behavioral Science, 53, 203–212. https://doi.org/10.1016/j.sbspro.2012.09.873. (PMID: 10.1016/j.sbspro.2012.09.873)
Quartieri, J., Mastorakis, N., Iannone, G., Guarnaccia, C., D'Ambrosio, S., Troisi, A., & Lenza, T. (2009). A review of traffic noise predictive noise models. 72–80. Available in:  https://www.wseas.us/e-library/conferences/2009/tenerife/MECHANICS/MECHANICS-12.pdf . Accessed 5 Jan 2024.
Romeu, J., Genescà, M., Pàmines, T., & Jimménez, S. (2011). Street categorization for the estimation of day levels using short-term measurements. Applied Acoustics, 72, 569–577. https://doi.org/10.1016/j.apacoust.2010.09.012. (PMID: 10.1016/j.apacoust.2010.09.012)
Rossi, I. A., Vienneau, D., Ragettli, M. S., & Flückiger, B. (2020). Estimating the health benefits associated with a speed limit reduction to thirty kilometres per hour : A health impact assessment of noise and road traffic crashes for the Swiss city of Lausanne. Environment International, 145, 106126. https://doi.org/10.1016/j.envint.2020.106126. (PMID: 10.1016/j.envint.2020.10612632971416)
SENATRAN. (2022). Secretaria Nacional de Trânsito. Total fleet of vehicles registered in April/2022 in Sorocaba. Available in: https://www.gov.br/infraestrutura/pt-br/assuntos/transito/conteudo-denatran/frota-de-veiculos-2022 . Accessed 29 May 2022 .
Souza, D. D. O., & Zannin, P. H. T. (2020). Aircraft noise mapping: Bacacheri Airport. Revista Nacional de Gerenciamento de Cidades. 8, 22–30. https://doi.org/10.17271/2318847286820202727.
Stansfeld, S., Clark, C., Smuk, M., Gallacher, J., & Babisch, W. (2021). Road traffic noise, noise sensitivity, noise annoyance, psychological and physical health and mortality. Environmental Health, 20, 32. https://doi.org/10.1186/s12940-021-00720-3. (PMID: 10.1186/s12940-021-00720-3337660567995714)
Susanto, A., Setyawan, D. O., Setiabudi, F., Savira, Y. M., Listiarini, A., Putro, E. K., Muhamad, A. F., Wilmot, J. C., Zulfakar, D., Kara, P., Shofwati, I., Sodikin, S., & Tejamaya, M. (2021). GIS-based mapping of noise from mechanized minerals ore processing industry. Noise Mapping, 8, 1–15. https://doi.org/10.1515/noise-2021-0001. (PMID: 10.1515/noise-2021-0001)
Taufner, M. D., Gama, A. P., Slama, J. G., & Torres, J. C. B. (2020). Noise metrics analysis in schools near airports: A Brazilian case study. Noise Mapping, 7, 21–34. https://doi.org/10.1515/noise-2020-0003. (PMID: 10.1515/noise-2020-0003)
Tomei, G., Fioravanti, M., Cerratti, D., Sancini, A., Tomao, E., Rosati, M. V., Vacca, D., Palitti, T., Di Famiani, M., Giubilati, R., De Sio, S., & Tomei, F. (2010). Occupational exposure to noise and the cardiovascular system: A meta-analysis. Science of the Total Environment, 408, 681–689. https://doi.org/10.1016/j.scitotenv.2009.10.071. (PMID: 10.1016/j.scitotenv.2009.10.07119931119)
van Kempen, E., Casas, M., Pershagen, G., & Foraster, M. (2018). WHO environmental noise guidelines for the European region: A systematic review on environmental noise and cardiovascular and metabolic effects: A summary. International Journal of Environmental Research and Public Health, 15, 1–59. https://doi.org/10.3390/ijerph15020379. (PMID: 10.3390/ijerph15020379)
WG-AEN. (2006). European Commission Working Group. Good practice guide for strategic noise mapping and the production of associated data on noise exposure. Version 2, pp 1–129.
WHO & JRC (2011). Burden of disease from environmental noise - Quantification of healthy life years lost in Europe, World Health Organization. Available in: https://www.euro.who.int/__data/assets/pdf_file/0008/136466/e94888.pdf . Accessed 14 June 2022.
Wosniacki, G. G., & Zannin, P. H. T. (2021). Framework to manage railway noise exposure in Brazil based on field measurements and strategic noise mapping at the local level. Science of the Total Environment, 757, 143721. https://doi.org/10.1016/j.scitotenv.2020.143721. (PMID: 10.1016/j.scitotenv.2020.14372133229078)
Wysocki, A. B. (1996). The effect of intermittent noise exposure on wound healing. Advances in Wound Care, 9, 35–39. (PMID: 8688977)
Zagubień, A. T., & Wolniewicz, K. B. (2015). Verifying traffic noise analysis calculation models. Polish Journal of Environmental Studies, 24, 2767–2772. https://doi.org/10.15244/pjoes/58962.
Zannin, P. H. T., & Bunn, F. (2014). Noise annoyance through railway traffic - A case study. Journal of Environmental Health Science and Engineering, 12, 1–12. https://doi.org/10.1186/2052-336X-12-14. (PMID: 10.1186/2052-336X-12-14)
Zannin, P. H. T., & Ferraz, F. (2016). Assessment of indoor and outdoor noise pollution at a university hospital based on acoustic measurements and noise Mapping. Open Journal of Acoustics, 06, 71–85. https://doi.org/10.4236/oja.2016.64006. (PMID: 10.4236/oja.2016.64006)
Zannin, P. H. T., Engel, M. S., Fiedler, P. E. K., & Bunn, F. (2013). Characterization of environmental noise based on noise measurements, noise mapping and interviews: A case study at a university campus in Brazil. Cities, 31, 317–327. https://doi.org/10.1016/j.cities.2012.09.008. (PMID: 10.1016/j.cities.2012.09.008)
Zannin, P. H. T., Nascimento, E. O., Paz, E. C., & Valle, F. (2018). Application of artificial neural networks for noise barrier optimization. Environments, 5, 135. https://doi.org/10.3390/environments5120135.
Zannin, P. H. T., Milanês, M. L., & De Oliveira Filho, M. V. M. (2019a). Evaluation of noise in the vicinity of a hospital and a gated community. Current Urban Studies, 07, 59–75. https://doi.org/10.4236/cus.2019.71004. (PMID: 10.4236/cus.2019.71004)
Zannin, P. H. T., Valle, F., & Nascimento, E. O. (2019b). Assessment of noise pollution along two main avenues in Curitiba. Open Journal of Acoustics, 09, 26–38. https://doi.org/10.4236/oja.2019.92003. (PMID: 10.4236/oja.2019.92003)
فهرسة مساهمة: Keywords: Environmental noise; Environmental pollution; Noise map; Public health
تواريخ الأحداث: Date Created: 20240215 Date Completed: 20240216 Latest Revision: 20240312
رمز التحديث: 20240312
DOI: 10.1007/s10661-024-12391-x
PMID: 38356083
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2959
DOI:10.1007/s10661-024-12391-x