دورية أكاديمية

Detection of effusion tumor cells under different storage and processing conditions.

التفاصيل البيبلوغرافية
العنوان: Detection of effusion tumor cells under different storage and processing conditions.
المؤلفون: Libert DM; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA., Zhu Y; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA., Wang A; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA., Allard GM; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA., Cheng-Yi Lowe A; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
المصدر: Cancer cytopathology [Cancer Cytopathol] 2024 May; Vol. 132 (5), pp. 297-308. Date of Electronic Publication: 2024 Feb 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 101499453 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1934-6638 (Electronic) Linking ISSN: 1934662X NLM ISO Abbreviation: Cancer Cytopathol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : Wiley-Blackwell
مواضيع طبية MeSH: Neoplastic Cells, Circulating*/pathology , Neoplastic Cells, Circulating*/metabolism , Pleural Effusion, Malignant*/pathology , Pleural Effusion, Malignant*/diagnosis , Epithelial Cell Adhesion Molecule*/metabolism, Humans ; Specimen Handling/methods ; Biomarkers, Tumor/metabolism ; Biomarkers, Tumor/analysis ; Leukocyte Common Antigens/metabolism ; Leukocyte Common Antigens/analysis ; Fluorescent Antibody Technique/methods
مستخلص: Background: Circulating tumor cells (CTCs) shed into blood provide prognostic and/or predictive information. Previously, the authors established an assay to detect carcinoma cells from pleural fluid, termed effusion tumor cells (ETCs), by employing an immunofluorescence-based CTC-identification platform (RareCyte) on air-dried unstained ThinPrep (TP) slides. To facilitate clinical integration, they evaluated different slide processing and storage conditions, hypothesizing that alternative comparable conditions for ETC detection exist.
Methods: The authors enumerated ETCs on RareCyte, using morphology and mean fluorescence intensity (MFI) cutoffs of >100 arbitrary units (a.u.) for epithelial cellular adhesion molecule (EpCAM) and <100 a.u. for CD45. They analyzed malignant pleural fluid from three patients under seven processing and/or staining conditions, three patients after short-term storage under three conditions, and seven samples following long-term storage at -80°C. MFI values of 4',6-diamidino-2-phenylindol, cytokeratin, CD45, and EpCAM were compared.
Results: ETCs were detected in all conditions. Among the different processing conditions tested, the ethanol-fixed, unstained TP was most similar to the previously established air-dried, unstained TP protocol. All smears and Pap-stained TPs had significantly different marker MFIs from the established condition. After short-term storage, the established condition showed comparable results, but ethanol-fixed and Pap-stained slides showed significant differences. ETCs were detectable after long-term storage at -80°C in comparable numbers to freshly prepared slides, but most marker MFIs were significantly different.
Conclusions: It is possible to detect ETCs under different processing and storage conditions, lending promise to the application of this method in broader settings. Because of decreased immunofluorescence-signature distinctions between cells, morphology may need to play a larger role.
(© 2024 American Cancer Society.)
References: Yang C, Xia B‐R, Jin W‐L, Lou G Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int. 2019;19(1):341. doi:10.1186/s12935‐019‐1067‐8.
Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781‐791. doi:10.1056/nejmoa040766.
Cohen SJ, Punt CJ, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression‐free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008;26(19):3213‐3221. doi:10.1200/jco.2007.15.8923.
Huang J, Wang K, Xu J, Huang J, Zhang T. Prognostic significance of circulating tumor cells in non‐small‐cell lung cancer patients: a meta‐analysis. PLoS One. 2013;8(11):e78070. doi:10.1371/journal.pone.0078070.
Sundling KE, Lowe AC. Circulating tumor cells: overview and opportunities in cytology. Adv Anat Pathol. 2019;26(1):56‐63. doi:10.1097/pap.0000000000000217.
Hagenbeck C, Melcher CA, Janni JW, et al. DETECT III: A multicenter, randomized, phase III study to compare standard therapy alone versus standard therapy plus lapatinib in patients (pts) with initially HER2‐negative metastatic breast cancer but with HER2‐positive circulating tumor cells (CTC). J Clin Oncol. 2012;30(suppl 15):TPS1146. doi:10.1200/jco.2012.30.15_suppl.tps1146.
Sundaresan TK, Sequist LV, Heymach JV, et al. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood‐based analyses. Clin. Cancer Res. 2016;22(5):1103‐1110. doi:10.1158/1078‐0432.ccr‐15‐1031.
Batool SM, Yekula A, Khanna P, et al. The Liquid Biopsy Consortium: challenges and opportunities for early cancer detection and monitoring. Cell Rep. Med. 2023;4(10):101198. doi:10.1016/j.xcrm.2023.101198.
De Mattos‐Arruda L, Mayor R, Ng CKY, et al. Cerebrospinal fluid‐derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6(1):8839. doi:10.1038/ncomms9839.
Tu M, Cheng J, Chen YL, et al. Electric field‐induced release and measurement (EFIRM): characterization and technical validation of a novel liquid biopsy platform in plasma and saliva. J. Mol. Diagn. 2020;22(8):1050‐1062. doi:10.1016/j.jmoldx.2020.05.005.
Shanmugam A, Hariharan AK, Hasina R, et al. Ultrasensitive detection of tumor‐specific mutations in saliva of patients with oral cavity squamous cell carcinoma. Cancer. 2021;127(10):1576‐1589. doi:10.1002/cncr.33393.
Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies. Mol Oncol. 2016;10(3):374‐394. doi:10.1016/j.molonc.2016.01.007.
Kaldjian EP, Ramirez AB, Sun Y, et al. The RareCyte platform for next‐generation analysis of circulating tumor cells. Cytometry. 2018;93(12):1220‐1225. doi:10.1002/cyto.a.23619.
Campton DE, Ramirez AB, Nordberg JJ, et al. High‐recovery visual identification and single‐cell retrieval of circulating tumor cells for genomic analysis using a dual‐technology platform integrated with automated immunofluorescence staining. BMC Cancer. 2015;15(1):360. doi:10.1186/s12885‐015‐1383‐x.
Sabath DE, Perrone ME, Clein A, et al. Clinical validation of a circulating tumor cell assay using density centrifugation and automated immunofluorescence microscopy. Am J Clin Pathol. 2022;158(2):270‐276. doi:10.1093/ajcp/aqac040.
Porcel JM, Esquerda A, Vives M, Bielsa S. Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. Arch. Bronconeumol. 2014;50(5):161‐165. doi:10.1016/j.arbr.2014.03.012.
Zhu Y, Allard GM, Ericson NG, George TC, Kunder CA, Lowe AC. Identification and characterization of effusion tumor cells (ETCs) from remnant pleural effusion specimens. Cancer Cytopathol. 2021;129(11):893‐906. doi:10.1002/cncy.22483.
Zhu Y, Wang A, Allard GM, et al. Immunofluorescent and molecular characterization of effusion tumor cells reveal cancer site‐of‐origin and disease‐driving mutations. Cancer Cytopathol. 2022;130(10):771‐782. doi:10.1002/cncy.22610.
Starr RL, Sherman ME. The value of multiple preparations in the diagnosis of malignant pleural effusions. A cost‐benefit analysis. Acta Cytol. 1991;35:533‐537.
Venrick MG, Sidawy MK. Cytologic evaluation of serous effusions. Processing techniques and optimal number of smears for routine preparation. Am J Clin Pathol. 1993;99(2):182‐186. doi:10.1093/ajcp/99.2.182.
Al‐Abbadi MA. Basics of cytology. Avicenna J. Med. 2011;1(01):18‐28. doi:10.4103/2231‐0770.83719.
Zhou W, Geiersbach K, Chadwick B. Rapid removal of cytology slide coverslips for DNA and RNA isolation. J. Am. Soc. Cytopathol. 2017;6(1):24‐27. doi:10.1016/j.jasc.2016.08.005.
Zhu Y, Moore S, Wang A, et al. Comprehensive epithelial biomarker analysis of malignant mesothelioma: EpCAM positivity is a potential diagnostic pitfall. Cancer Cytopathol. 2023;131(8):507‐515. doi:10.1002/cncy.22706.
Hwang DH, Garcia EP, Ducar MD, Cibas ES, Sholl LM. Next‐generation sequencing of cytologic preparations: an analysis of quality metrics. Cancer Cytopathol. 2017;125(10):786‐794. doi:10.1002/cncy.21897.
Treece AL, Montgomery ND, Patel NM, et al. FNA smears as a potential source of DNA for targeted next‐generation sequencing of lung adenocarcinomas. Cancer Cytopathol. 2016;124(6):406‐414. doi:10.1002/cncy.21699.
Sorber L, Claes B, Zwaenepoel K, et al. Evaluation of cytologic sample preparations for compatibility with nucleic acid analysis. Am J Clin Pathol. 2022;157(2):293‐304. doi:10.1093/ajcp/aqab121.
Kwon HS, Shin DH, Kim SY, et al. DNA extracted from cytologic slides is a valuable source for PCR‐based molecular tests. Acta Cytol. 2023;67(1):92‐99. doi:10.1159/000526634.
Kim Y, Choi KR, Chae MJ, et al. Stability of DNA, RNA, cytomorphology, and immunoantigenicity in residual ThinPrep specimens. APMIS. 2013;121(11):1064‐1072. doi:10.1111/apm.12082.
معلومات مُعتمدة: Stanford University School of Medicine Department of Pathology
فهرسة مساهمة: Keywords: RareCyte; effusion tumor cells; processing; rare cell detection; storage
المشرفين على المادة: 0 (Epithelial Cell Adhesion Molecule)
0 (Biomarkers, Tumor)
EC 3.1.3.48 (Leukocyte Common Antigens)
0 (EPCAM protein, human)
تواريخ الأحداث: Date Created: 20240219 Date Completed: 20240501 Latest Revision: 20240501
رمز التحديث: 20240501
DOI: 10.1002/cncy.22803
PMID: 38373107
قاعدة البيانات: MEDLINE