دورية أكاديمية

Yellow leaf green tea modulates the AMPK/ACC/SREBP1c signaling pathway and gut microbiota in high-fat diet-induced mice to alleviate obesity.

التفاصيل البيبلوغرافية
العنوان: Yellow leaf green tea modulates the AMPK/ACC/SREBP1c signaling pathway and gut microbiota in high-fat diet-induced mice to alleviate obesity.
المؤلفون: Tian B; College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China., Pan Y; College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China., Zhou X; College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China., Jiang Y; College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China., Zhang X; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China., Luo X; Sichuan Three MT. TEA-INDUSTRY Co., Ltd, Guangyuan, China., Yang K; College of Food Science and Technology, Zhejiang University of Technology, Huzhou, China.
المصدر: Journal of the science of food and agriculture [J Sci Food Agric] 2024 Aug 15; Vol. 104 (10), pp. 5882-5895. Date of Electronic Publication: 2024 Mar 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: England NLM ID: 0376334 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0010 (Electronic) Linking ISSN: 00225142 NLM ISO Abbreviation: J Sci Food Agric Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005-> : Chichester, West Sussex : John Wiley & Sons
Original Publication: London, Society of Chemical Industry.
مواضيع طبية MeSH: Gastrointestinal Microbiome*/drug effects , Diet, High-Fat*/adverse effects , Obesity*/metabolism , Obesity*/microbiology , Obesity*/drug therapy , Obesity*/diet therapy , Mice, Inbred C57BL* , Camellia sinensis*/chemistry , Signal Transduction*/drug effects , Plant Leaves*/chemistry , Plant Extracts*/pharmacology , Plant Extracts*/chemistry , AMP-Activated Protein Kinases*/metabolism , Sterol Regulatory Element Binding Protein 1*/metabolism , Sterol Regulatory Element Binding Protein 1*/genetics, Animals ; Mice ; Male ; Humans ; Acetyl-CoA Carboxylase/metabolism ; Acetyl-CoA Carboxylase/genetics ; Tea/chemistry ; Bacteria/classification ; Bacteria/genetics ; Bacteria/isolation & purification ; Bacteria/drug effects ; Bacteria/metabolism ; Liver/metabolism ; Liver/drug effects ; Anti-Obesity Agents/pharmacology ; Anti-Obesity Agents/administration & dosage
مستخلص: Background: Yellow leaf green tea (YLGT) is a new variety of Camellia sinensis (L.) O. Ktze, which has yellow leaves and the unique qualities of 'three green through three yellow'. The present study aimed to investigate the anti-obesity effect of YLGT in mice fed a high-fat diet (HFD) and to explore the potential mechanisms by regulating the AMPK/ACC/SREBP1c signaling pathways and gut microbiota.
Results: The results showed that YLGT aqueous extract reduced body weight, hepatic inflammation, fat accumulation and hyperlipidemia in HFD-induced C57BL/6J mice, and also accelerated energy metabolism, reduced fat synthesis and suppressed obesity by activating the AMPK/CPT-1α signaling pathway and inhibiting the FAS/ACC/SREBP-1c signaling pathway. Fecal microbiota transplantation experiment further confirmed that the alteration of gut microbiota (e.g. increasing unclassified_Muribaculaceae and decreasing Colidextribacter) might be an important cause of YLGT water extract inhibiting obesity.
Conclusion: In conclusion, YLGT has a broad application prospect in the treatment of obesity and the development of anti-obesity function beverages. © 2024 Society of Chemical Industry.
(© 2024 Society of Chemical Industry.)
References: Xu DX, Guo XX, Zeng Z, Wang Y and Qiu J, Puerarin improves hepatic glucose and lipid homeostasis in vitro and in vivo by regulating the AMPK pathway. Food Funct 12:2726–2740 (2021).
Mayyas F, Alzoubi KH and Al‐Taleb Z, Impact of high fat/high salt diet on myocardial oxidative stress. Clin Exp Hypertens 39:126–132 (2017).
Kopelman PG, Obesity as a medical problem. Nature 404:635–643 (2000).
Leong I, Metabolic adaptations to high‐fat diet. Nat Rev Endocrinol 14:689 (2018).
Crovesy L, Masterson D and Rosado EL, Profile of the gut microbiota of adults with obesity: a systematic review. Eur J Clin Nutr 74:1251–1262 (2020).
Sang T, Guo C, Guo D, Wu J, Wang Y, Wang Y et al., Suppression of obesity and inflammation by polysaccharide from sporoderm‐broken spore of Ganoderma lucidum via gut microbiota regulation. Carbohydr Polym 256:117594 (2021).
Liu Z, Chen Z, Guo H, He D, Zhao H, Wang Z et al., The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high‐fat‐induced obese mice. Food Funct 7:4869–4879 (2016).
Wu J, Li MJ, Zhou C, Rong JM and Niu J, The potential of amino acids and gut microbiota to predict and promote mucosal healing of ulcerative colitis. Gut 71:A57–A58 (2022).
Morris A, Gut microbiota fibre restores restores healthy gut microbiota. Nat Rev Endocrinol 14:63 (2018).
Ding Y‐Y, Fang Y, Pan Y, Lan J, Xu T, Zhang W et al., Orally administered octacosanol improves liver insulin resistance in high‐fat diet‐fed mice through the reconstruction of the gut microbiota structure and inhibition of the TLR4/NF‐κB inflammatory pathway. Food Funct 14:769–786 (2023).
Xu XY, Zhao CN, Li BY, Tang GY, Shang A, Gan RY et al., Effects and mechanisms of tea on obesity. Crit Rev Food Sci Nutr 63:3716–3733 (2023).
Bo B, Seong H, Kim G and Han NS, Antioxidant and prebiotic activities of Laphet, fermented tea leaves in Myanmar, during in vitro gastrointestinal digestion and colonic fermentation. J Funct Foods 95:105193 (2022).
Tan YW, Li MW, Kong KY, Xie YS, Zeng Z, Fang ZF et al., In vitro simulated digestion of and microbial characteristics in colonic fermentation of polysaccharides from four varieties of Tibetan tea. Food Res Int 163:112255 (2023).
Xu Y, Zhang M, Wu T, Dai SD, Xu JL and Zhou ZK, The anti‐obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high‐fat diet. Food Funct 6:297–304 (2015).
Wang L, Zeng BH, Zhang XJ, Liao ZL, Gu LH, Liu ZW et al., The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice. Food Funct 7:4956–4966 (2016).
Suzuki T, Pervin M, Goto S, Isemura M and Nakamura Y, Beneficial effects of tea and the green tea catechin epigallocatechin‐3‐gallate on obesity. Molecules 21:1305 (2016).
Liu JH, Hao WJ, He ZY, Kwek E, Zhao YM, Zhu HY et al., Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high‐fat diet. Food Funct 10:2847–2860 (2019).
Li P, Zhou B, Ge M, Jing X and Yang L, Metal coordination induced SERS nanoprobe for sensitive and selective detection of histamine in serum. Talanta 237:122913 (2022).
Xu J, Wang M, Zhao J, Wang YH, Tang Q and Khan IA, Yellow tea (Camellia sinensis L.), a promising Chinese tea: processing, chemical constituents and health benefits. Food Res Int 107:567–577 (2018).
Xu Q, Yang Y, Hu KL, Chen J, Djomo SN, Yang X et al., Economic, environmental, and emergy analysis of China's green tea production. Sustain Prod Consump 28:269–280 (2021).
Lin YS, Tsai YJ, Tsay JS and Lin JK, Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agr Food Chem 51:1864–1873 (2003).
Tao W, Cao WG, Yu B, Chen H, Gong RX, Luorong QJ et al., Hawk tea prevents high‐fat diet‐induced obesity in mice by activating the AMPK/ACC/SREBP1c signaling pathways and regulating the gut microbiota. Food Funct 13:6056–6071 (2022).
Zhou F, Zhu MZ, Tang JY, Ou‐Yang J, Shang BH, Liu CW et al., Six types of tea extracts attenuated high‐fat diet‐induced metabolic syndrome via modulating gut microbiota in rats. Food Res Int 161:111788 (2022).
Han H‐S, Lee H‐H, Gil H‐S, Chung K‐S, Kim J‐K, Kim D‐H et al., Standardized hot water extract from the leaves of Hydrangea serrata (Thunb.) Ser. alleviates obesity via the AMPK pathway and modulation of the gut microbiota composition in high fat diet‐induced obese mice. Food Funct 12:2672–2685 (2021).
Tian B, Zhao J, Zhang M, Chen Z, Ma Q, Liu H et al., Lycium ruthenicum anthocyanins attenuate high‐fat diet‐induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota. Mol Nutr Food Res 65:2000745 (2021).
Qin NB, Song GK, Ren XM, Zhang LH, Gao JZ, Xia XD et al., Fish oil extracted from Coregonus peled improves obese phenotype and changes gut microbiota in a high‐fat diet‐induced mouse model of recurrent obesity. Food Funct 11:6158–6169 (2020).
Pavlisova J, Horakova O, Kalendova V, Buresova J, Bardova K, Holendova B et al., Chronic n‐3 fatty acid intake enhances insulin response to oral glucose and elevates GLP‐1 in high‐fat diet‐fed obese mice. Food Funct 11:9764–9775 (2020).
Wang P, Cai M, Yang K, Sun P, Xu J, Li Z et al., Phenolics from Dendrobium officinale leaf ameliorate dextran sulfate sodium‐induced chronic colitis by regulating gut microbiota and intestinal barrier. J Agr Food Chem 71:16630–16646 (2023).
Mika A and Sledzinski T, Alterations of specific lipid groups in serum of obese humans: a review. Obes Rev 18:247–272 (2017).
Li HY, Kek HC, Lim J, Gelling RW and Han WP, Green tea (−)‐epigallocatechin‐3‐gallate counteracts daytime overeating induced by high‐fat diet in mice. Mol Nutr Food Res 60:2565–2575 (2016).
Ramirez NM, de Queiroz JH, Ribeiro SMR, Toledo RCL, Moreira MEC, Mafra CL et al., Mango leaf tea promotes hepatoprotective effects in obese rats. J Funct Foods 49:437–446 (2018).
Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW and Chang YN, Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin‐resistant HepG2 cells and HFD/STZ‐induced C57BL/6J mice. J Agr Food Chem 69:5618–5627 (2021).
Yu HN, Qin XY, Yu Z, Chen Y, Tang L and Shan WG, Effects of high‐fat diet on the formation of depressive‐like behavior in mice. Food Funct 12:6416–6431 (2021).
Canbolat E and Cakiroglu FP, The importance of AMPK in obesity and chronic diseases and the relationship of AMPK with nutrition: a literature review. Crit Rev Food Sci Nutr 63:449–456 (2023).
Ferre P, Phan F and Foufelle F, SREBP‐1c and lipogenesis in the liver: an update. Biochem J 478:3723–3739 (2021).
Li LF, Zhang XY, Ren HJ, Huang XQ, Shen T, Tang WQ et al., miR‐23a/b‐3p promotes hepatic lipid accumulation by regulating Srebp‐1c and Fas. J Mol Endocrinol 68:35–49 (2022).
De los Santos S, Reyes‐Castro LA, Coral‐Vazquez RM, Mendez JP, Zambrano E and Canto P, (−)‐Epicatechin increases apelin/APLNR expression and modifies proteins involved in lipid metabolism of offspring descendants of maternal obesity. J Nutr Biochem 117:109350 (2023).
Wueest S, Mueller R, Bluher M, Item F, Chin ASH, Wiedemann MSF et al., Fas (CD95) expression in myeloid cells promotes obesity‐induced muscle insulin resistance. EMBO Mol Med 6:43–56 (2014).
Jagannathan L, Socks E, Balasubramanian P, McGowan R, Herdt TM, Kianian R et al., Oleic acid stimulates monoamine efflux through PPAR‐alpha: differential effects in diet‐induced obesity. Life Sci 255:117867 (2020).
Wang G, Wu B, Zhang L, Cui Y, Zhang B and Wang H, Laquinimod prevents adipogenesis and obesity by down‐regulating PPAR‐gamma and C/EBPalpha through activating AMPK. ACS Omega 5:22958–22965 (2020).
Cao J, McClung JA, Singh SP, Bellner L, Waldman M, Schragenheim J et al., Diabetic cardiomyopathy is reversed by increased mitochondrial bioenergetics due to PGC‐1 alpha activation by EET treatment of obese mice. Hypertension 68:AP233 (2016).
Miller KN, Clark JP and Anderson RM, Mitochondrial regulator PGC‐1a‐modulating the modulator. Curr Opin Endocr Metab Res 5:37–44 (2019).
Castillo‐Quan JI, From white to brown fat through the PGC‐1 alpha‐dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech 5:293–295 (2012).
Cremonini E, Wang ZW, Bettaieb A, Adamo AM, Daveri E, Mills DA et al., (−)‐Epicatechin protects the intestinal barrier from high fat diet‐induced permeabilization: implications for steatosis and insulin resistance. Redox Biol 14:588–599 (2018).
Rong BH, Xia TY, Zhang TT, Feng RN, Huang HT, Wu Q et al., Gut microbiota: a potential manipulator for host adipose tissue and energy metabolism. J Nutr Biochem 64:206–217 (2019).
Ye J, Zhao Y, Chen XM, Zhou HY, Yang YC, Zhang XQ et al., Pu‐erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Res Int 144:110360 (2021).
Li T, Gao X, Yan Z, Wai T‐S, Yang W, Chen J et al., Understanding the tonifying and the detoxifying properties of Chinese medicines from their impacts on gut microbiota and host metabolism: a case study with four medicinal herbs in experimental colitis rat model. Chin Med 17:118 (2022).
Tian B, Geng Y, Wang P, Cai M, Neng J, Hu J et al., Ferulic acid improves intestinal barrier function through altering gut microbiota composition in high‐fat diet‐induced mice. Eur J Nutr 61:3767–3783 (2022).
Yan S, Chen J, Zhu L, Guo T, Qin D, Hu Z et al., Oryzanol alleviates high fat and cholesterol diet‐induced hypercholesterolemia associated with the modulation of the gut microbiota in hamsters. Food Funct 13:4486–4501 (2022).
Cani PD, Microbiota and metabolites in metabolic diseases. Nat Rev Endocrinol 15:69–70 (2019).
معلومات مُعتمدة: 2022C04036 Zhejiang Provincial Key Research and Development Program; 2023C02040 Zhejiang Provincial Key Research and Development Program
فهرسة مساهمة: Keywords: energy metabolism; fecal microbiota transplantation; high‐fat diets; obesity; yellow leaf green tea
المشرفين على المادة: 0 (Plant Extracts)
EC 2.7.11.31 (AMP-Activated Protein Kinases)
0 (Sterol Regulatory Element Binding Protein 1)
EC 6.4.1.2 (Acetyl-CoA Carboxylase)
0 (Tea)
0 (Anti-Obesity Agents)
تواريخ الأحداث: Date Created: 20240226 Date Completed: 20240618 Latest Revision: 20240618
رمز التحديث: 20240619
DOI: 10.1002/jsfa.13413
PMID: 38407390
قاعدة البيانات: MEDLINE