دورية أكاديمية

Red pandas with different diets and environments exhibit different gut microbial functional composition and capacity.

التفاصيل البيبلوغرافية
العنوان: Red pandas with different diets and environments exhibit different gut microbial functional composition and capacity.
المؤلفون: Lu Y; Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China., Zhang L; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China., Liu X; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China., Lan Y; Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China., Wu L; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China., Wang J; Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China., Wu K; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China., Yang C; Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China., Lv R; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China., Yi D; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China., Zhuo G; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China., Li Y; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China., Shen F; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China., Hou R; Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China., Yue B; Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China.; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China., Fan Z; Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China.; Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China.
المصدر: Integrative zoology [Integr Zool] 2024 Jul; Vol. 19 (4), pp. 662-682. Date of Electronic Publication: 2024 Feb 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Publishing Asia Pty Ltd Country of Publication: Australia NLM ID: 101492420 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1749-4877 (Electronic) Linking ISSN: 17494869 NLM ISO Abbreviation: Integr Zool Subsets: MEDLINE
أسماء مطبوعة: Publication: 2012-: Richmond, Vic., Australia : Wiley Publishing Asia Pty Ltd
Original Publication: 2006-2012: [Oxford, England] : Blackwell Publishing
مواضيع طبية MeSH: Gastrointestinal Microbiome*/physiology , Diet*/veterinary , Ailuridae*/microbiology , Feces*/microbiology , RNA, Ribosomal, 16S*/genetics, Animals ; Bacteria/classification ; Animal Feed/analysis ; Environment
مستخلص: The red panda (Ailurus fulgens) is a distinctive mammal known for its reliance on a diet primarily consisting of bamboo. The gut microbiota and overall health of animals are strongly influenced by diets and environments. Therefore, conducting research to explore the taxonomical and functional variances within the gut microbiota of red pandas exposed to various dietary and environmental conditions could shed light on the dynamic complexities of their microbial communities. In this study, normal fecal samples were obtained from red pandas residing in captive and semi-free environments under different dietary regimes and used for metabolomic, 16S rRNA, and metagenomic sequencing analysis, with the pandas classified into four distinct cohorts according to diet and environment. In addition, metagenomic sequencing was conducted on mucus fecal samples to elucidate potential etiological agents of disease. Results revealed an increased risk of gastrointestinal diseases in red pandas consuming bamboo shoots due to the heightened presence of pathogenic bacteria, although an increased presence of microbiota-derived tryptophan metabolites appeared to facilitate intestinal balance. The red pandas fed bamboo leaves also exhibited a decrease in gut microbial diversity, which may be attributed to the antibacterial flavonoids and lower protein levels in leaves. Notably, red pandas residing in semi-free environments demonstrated an enriched gut microbial diversity. Moreover, the occurrence of mucus secretion may be due to an increased presence of species associated with diarrhea and a reduced level of microbiota-derived tryptophan metabolites. In summary, our findings substantiate the influential role of diet and environment in modulating the gut microbiota of red pandas, offering potential implications for improved captive breeding practices.
(© 2024 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.)
References: Ala M (2022). Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. International Reviews of Immunology 41, 326–345.
Alex CE, Kubiski SV, Li L et al. (2018). Amdoparvovirus infection in red pandas (Ailurus fulgens). Veterinary Pathology 55, 552–561.
Allen‐Vercoe E, Coburn B (2020). A microbiota‐derived metabolite augments cancer immunotherapy responses in mice. Cancer Cell 38, 452–453.
Bai L, Xia S, Lan R et al. (2012). Isolation and characterization of cytotoxic, aggregative Citrobacter freundii. PLoS ONE 7, e33054.
Beghini F, McIver LJ, Blanco‐Míguez A et al. (2021). Integrating taxonomic, functional, and strain‐level profiling of diverse microbial communities with bioBakery 3. eLife 10, e65088.
Bertani B, Ruiz N (2018). Function and biogenesis of lipopolysaccharides. EcoSal Plus 8, ESP–0001.
Black RE, Slome S (1988). Yersinia enterocolitica. Infectious Disease Clinics of North America 2, 625–641.
Bokulich NA, Subramanian S, Faith JJ et al. (2013). Quality‐filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10, 57–59.
Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
Buchfink B, Xie C, Huson DH (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, 59–60.
Butteiger DN, Hibberd AA, McGraw NJ, Napawan N, Hall‐Porter JM, Krul ES (2016). Soy protein compared with milk protein in a western diet increases gut microbial diversity and reduces serum lipids in golden Syrian hamsters. The Journal of Nutrition 146, 697–705.
Caradonna L, Amati L, Magrone T, Pellegrino NM, Jirillo E, Caccavo D (2000). Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. Journal of Endotoxin Research 6, 205–214.
Chang F, He S, Dang C (2022). Assisted selection of biomarkers by linear discriminant analysis effect size (lefse) in microbiome data. Journal of Visualized Experiments 183, e61715.
Chen L, Shen F, Wu L, Zhuo G, Hou R, Zhang L (2020). Parental testing system for population genetic management of red panda based on microsatellite markers. Acta Theriologica Sinica 40, 467–474.
Chen S, Thompson KM, Francis MS (2016). Environmental regulation of Yersinia pathophysiology. Frontiers in Cellular and Infection Microbiology 6, 25.
Chen S, Zhou Y, Chen Y, Gu J (2018). fastp: an ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics 34, i884–i890.
Chi X, Gao H, Wu G et al. (2019). Comparison of gut microbiota diversity between wild and captive bharals (Pseudois nayaur). BMC Veterinary Research 15, 243.
Christian AL, Knott KK, Vance CK et al. (2015). Nutrient and mineral composition during shoot growth in seven species of Phyllostachys and Pseudosasa bamboo consumed by giant panda. Journal of Animal Physiology and Animal Nutrition 99, 1172–1183.
Chuang CH, Janapatla RP, Wang YH et al. (2017). Pseudomonas aeruginosa‐associated diarrheal diseases in children. Pediatric Infectious Disease Journal 36, 1119–1123.
Chung LK, Bliska JB (2016). Yersinia versus host immunity: how a pathogen evades or triggers a protective response. Current Opinion in Microbiology 29, 56–62.
Cui YF, Wang FJ, Yu L, Ye HH, Yang GB (2019). Metagenomic comparison of the rectal microbiota between rhesus macaques (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). Zoological Research 40, 89–93.
Curry E, Browning LJ, Reinhart P, Roth TL (2017). Integrating trans‐abdominal ultrasonography with fecal steroid metabolite monitoring to accurately diagnose pregnancy and predict the timing of parturition in the red panda (Ailurus fulgens styani). Zoo Biology 36, 193–200.
Dai W, Xie D, Lu M et al. (2017). Characterization of white tea metabolome: comparison against green and black tea by a nontargeted metabolomics approach. Food Research International 96, 40–45.
Dantas LBR, Silva ALM, da Silva Júnior CP et al. (2020). Nootkatone inhibits acute and chronic inflammatory responses in mice. Molecules 25, 2181.
Deitch EA, Ma L, Ma WJ et al. (1989). Inhibition of endotoxin‐induced bacterial translocation in mice. Journal of Clinical Investigation 84, 36–42.
Dendup P, Humle T, Bista D, Penjor U, Lham C, Gyeltshen J (2020). Habitat requirements of the Himalayan red panda (Ailurus fulgens) and threat analysis in Jigme Dorji National Park, Bhutan. Ecology and Evolution 10, 9444–9453.
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.
Fàbrega A, Vila J (2012). Yersinia enterocolitica: pathogenesis, virulence and antimicrobial resistance. Enfermedades Infecciosas y Microbiología Clínica 30, 24–32.
Fang X, Kang L, Qiu YF, Li ZS, Bai Y (2023). Yersinia enterocolitica in Crohn's disease. Frontiers in Cellular and Infection Microbiology 13, 1129996.
Fu H, Zhang L, Fan C et al. (2021). Environment and host species identity shape gut microbiota diversity in sympatric herbivorous mammals. Microbial Biotechnology 14, 1300–1315.
Fu L, Niu B, Zhu Z, Wu S, Li W (2012). CD‐HIT: accelerated for clustering the next‐generation sequencing data. Bioinformatics 28, 3150–3152.
Glatston A, Wei F, Than Z, Sherpa A (2015). Ailurus fulgens. The IUCN Red List of Threatened Species 2015. [Cited 18 Aug 2022.] Available from URL: https://doi.org/10.2305/IUCN.UK.2015‐4.RLTS.T714A45195924.en.
González Olmo BMO, Butler MJ, Barrientos RM (2021). Evolution of the human diet and its impact on gut microbiota, immune responses, and brain health. Nutrients 13, 196.
Gould AL, Zhang V, Lamberti L et al. (2018). Microbiome interactions shape host fitness. PNAS 115, E11951–E11960.
Hall M, Beiko RG (2018). 16S rRNA gene analysis with QIIME2. Methods in Molecular Biology 1849, 113–129.
Hoff RT, Patel A, Shapiro A (2020). Pseudomonas aeruginosa: an uncommon cause of antibiotic‐associated diarrhea in an immunocompetent ambulatory adult. Case Reports in Gastrointestinal Medicine 2020, 6261748.
Hooper LV, Midtvedt T, Gordon JI (2002). How host‐microbial interactions shape the nutrient environment of the mammalian intestine. Annual Review of Nutrition 22, 283–307.
Hu Y, Thapa A, Fan H et al. (2020). Genomic evidence for two phylogenetic species and long‐term population bottlenecks in red pandas. Science Advances 6, eaax5751.
Huang G, Wang X, Hu Y et al. (2021). Diet drives convergent evolution of gut microbiomes in bamboo‐eating species. Science China Life Sciences 64, 88–95.
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119.
Izquierdo M, Lopez J, Gallardo P, Vidal RM, Ossa JC, Farfan MJ (2022). Bacteria from gut microbiota associated with diarrheal infections in children promote virulence of Shiga toxin‐producing and enteroaggregative Escherichia coli pathotypes. Frontiers in Cellular and Infection Microbiology 12, 867205.
Janapatla RP, Dudek A, Chen CL et al. (2023). Marine prebiotics mediate decolonization of Pseudomonas aeruginosa from gut by inhibiting secreted virulence factor interactions with mucins and enriching Bacteroides population. Journal of Biomedical Science 30, 9.
Johnson AJ, Vangay P, Al‐Ghalith GA et al. (2019). Daily sampling reveals personalized diet‐microbiome associations in humans. Cell Host & Microbe 25, 789–802.e5.
Kong F, Zhao J, Han S et al. (2014). Characterization of the gut microbiota in the red panda (Ailurus fulgens). PLoS ONE 9, e87885.
Kumar A, Rai U, Roka B, Jha AK, Reddy PA (2016). Genetic assessment of captive red panda (Ailurus fulgens) population. Springerplus 5, 1750.
Langmead B, Salzberg SL (2012). Fast gapped‐read alignment with Bowtie 2. Nature Methods 9, 357–359.
Lau SKP, Teng JLL, Chiu TH et al. (2018). Differential microbial communities of omnivorous and herbivorous cattle in southern China. Computational and Structural Biotechnology Journal 16, 54–60.
Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015). MEGAHIT: an ultra‐fast single‐node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.
Li Y, Guo W, Han S et al. (2015). The evolution of the gut microbiota in the giant and the red pandas. Scientific Reports 5, 10185.
Li Y, Liu N, Ge Y, Yang Y, Ren F, Wu Z (2022). Tryptophan and the innate intestinal immunity: crosstalk between metabolites, host innate immune cells, and microbiota. European Journal of Immunology 52, 856–868.
Li Z, Liu X, Zhao J et al. (2019). Prospective study on the excretion of mucous stools and its association with age, gender, and feces output in captive giant pandas. Animals 9, 264.
Liang Q, Vallance BA (2021). What's for dinner? How Citrobacter rodentium's metabolism helps it thrive in the competitive gut. Current Opinion in Microbiology 63, 76–82.
Lin L, Huang H (2019). Prevention and treatment of common diseases in red pandas. Fujian Animal Husbandry and Veterinary Medicine 41, 48–50.
Liu C, Hu J, Wu Y et al. (2021). Comparative study of gut microbiota from captive and confiscated‐rescued wild pangolins. Journal of Genetics and Genomics 48, 825–835.
Loeffler K (2011). Chapter 18 ‐ management, husbandry and veterinary medicine of red pandas living ex situ in China. In: Glatston AR, ed. Red Panda: Biology and Conservation of the First Panda. William Andrew Publishing, Oxford, pp. 323–334.
Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014). The carbohydrate‐active enzymes database (CAZy) in 2013. Nucleic Acids Research 42, D490–D495.
Magoč T, Salzberg SL (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.
Mainka SA, Guanlu Z, Mao L (1989). Utilization of a bamboo, sugar cane, and gruel diet by two juvenile giant pandas (Ailuropoda melanoleuc). Journal of Zoo and Wildlife Medicine 20, 39–44.
McFall‐Ngai M, Hadfield MG, Bosch TC et al. (2013). Animals in a bacterial world, a new imperative for the life sciences. PNAS 110, 3229–3236.
Meslier V, Laiola M, Roager HM et al. (2020). Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268.
Nickley J, Edwards M, Bray R (1999). The effect of bamboo intake on faecal consistency in giant pandas (Ailuropoda melanoleuca). Proceedings of the Third Conference on Zoo and Wildlife Nutrition. Available from URL: https://nagonline.net/wp‐content/uploads/2014/02/7_NICKLEY.pdf.
Panthi S, Coogan SC, Aryal A, Raubenheimer D (2015). Diet and nutrient balance of red panda in Nepal. Die Naturwissenschaften 102, 54.
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124.
Pasolli E, Asnicar F, Manara S et al. (2019). Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–62.e20.
Patel DK (2021). Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: a review of medicinal importance and health benefits. Cardiovascular & Hematological Disorders Drug Targets 21, 104–114.
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017). Salmon provides fast and bias‐aware quantification of transcript expression. Nature Methods 14, 417–419.
Quinn L, Gray SG, Meaney S, Finn S, McLoughlin P, Hayes M (2017). Extraction and quantification of sinapinic acid from Irish rapeseed meal and assessment of angiotensin‐I converting enzyme (ACE‐I) inhibitory activity. Journal of Agricultural and Food Chemistry 65, 6886–6892.
Robeson MS, O'Rourke DR, Kaehler BD et al. (2021). RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Computational Biology 17, e1009581.
Shrestha S, Thapa A, Bista D et al. (2021). Distribution and habitat attributes associated with the Himalayan red panda in the westernmost distribution range. Ecology and Evolution 11, 4023–4034.
Stanborough T, Fegan N, Powell SM, Singh T, Tamplin M, Chandry PS (2018). Genomic and metabolic characterization of spoilage‐associated Pseudomonas species. International Journal of Food Microbiology 268, 61–72.
Stewart RD, Auffret MD, Warr A et al. (2018). Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nature Communications 9, 870.
Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH (2007). UniRef: comprehensive and non‐redundant UniProt reference clusters. Bioinformatics 23, 1282–1288.
Tan Z, Deng J, Ye Q, Zhang Z (2022). The antibacterial activity of natural‐derived flavonoids. Current Topics in Medicinal Chemistry 22, 1009–1019.
Wang H, Zhong H, Hou R et al. (2017). A diet diverse in bamboo parts is important for giant panda (Ailuropoda melanoleuca) metabolism and health. Scientific Reports 7, 3377.
Wang L, Huang G, Hou R et al. (2021). Multi‐omics reveals the positive leverage of plant secondary metabolites on the gut microbiota in a non‐model mammal. Microbiome 9, 192.
Want EJ, Masson P, Michopoulos F et al. (2013). Global metabolic profiling of animal and human tissues via UPLC‐MS. Nature Protocols 8, 17–32.
Wen B, Mei Z, Zeng C, Liu S (2017). metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics 18, 183.
Williams CL, Dill‐McFarland KA, Sparks DL et al. (2018). Dietary changes during weaning shape the gut microbiota of red pandas (Ailurus fulgens). Conservation Physiology 6, cox075.
Williams CL, Dill‐McFarland KA, Vandewege MW et al. (2016). Dietary shifts may trigger dysbiosis and mucous stools in giant pandas (Ailuropoda melanoleuca). Frontiers in Microbiology 7, 661.
Wood DE, Salzberg SL (2014). Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biology 15, R46.
Xiu YF, Liu CC, Xu SH, Lin CS, Chou CC (2020). The Genetic diversity and population genetic structure of the red panda, Ailurus fulgens, in zoos in China. Animals 10, 1008.
Xu J, Lan Y, Wang X et al. (2022). Multi‐omics analysis reveals the host‐microbe interactions in aged rhesus macaques. Frontiers in Microbiology 13, 993879.
Yang S, Fan Z, Li J et al. (2023). Assembly of novel microbial genomes from gut metagenomes of rhesus macaque (Macaca mulatta). Gut Microbes 15, 2188848.
Yang S, Liu Y, Yang N et al. (2022). The gut microbiome and antibiotic resistome of chronic diarrhea rhesus macaques (Macaca mulatta) and its similarity to the human gut microbiome. Microbiome 10, 29.
Yang Y, Fuentes F, Shu L et al. (2017). Epigenetic CpG methylation of the promoter and reactivation of the expression of GSTP1 by astaxanthin in human prostate LNCaP cells. The AAPS Journal 19, 421–430.
Yang YP, Lu Y, Yu PJ et al. (2022). Characterization of gut microbial alterations in cynomolgus macaques during growth and maturation. Zoological Research 43, 176–179.
Zeng Y, Zeng D, Zhou Y et al. (2018). Microbial biogeography along the gastrointestinal tract of a red panda. Frontiers in Microbiology 9, 1411.
Zhang Z, Hu J, Yang J, Li M, Wei F (2009). Food habits and space‐use of red pandas Ailurus fulgens in the Fengtongzhai Nature Reserve, China: food effects and behavioural responses. Acta Theriologica 54, 225–234.
Zhao J, Zhang X, Liu H, Brown MA, Qiao S (2019). Dietary protein and gut microbiota composition and function. Current Protein & Peptide Science 20, 145–154.
معلومات مُعتمدة: 2022NSFSC0126 Natural Science Foundation of Sichuan Province; 2020CPB-B06 Foundation of Chengdu Research Base of Giant Panda Breeding
فهرسة مساهمة: Keywords: captive environment; diet; gut microbiota; red panda
المشرفين على المادة: 0 (RNA, Ribosomal, 16S)
تواريخ الأحداث: Date Created: 20240229 Date Completed: 20240711 Latest Revision: 20240711
رمز التحديث: 20240711
DOI: 10.1111/1749-4877.12813
PMID: 38420673
قاعدة البيانات: MEDLINE