دورية أكاديمية

Disappearing cities on US coasts.

التفاصيل البيبلوغرافية
العنوان: Disappearing cities on US coasts.
المؤلفون: Ohenhen LO; Department of Geosciences, Virginia Tech, Blacksburg, VA, USA. ohleonard@vt.edu.; Virginia Tech National Security Institute, Virginia Tech, Blacksburg, VA, USA. ohleonard@vt.edu., Shirzaei M; Department of Geosciences, Virginia Tech, Blacksburg, VA, USA.; Virginia Tech National Security Institute, Virginia Tech, Blacksburg, VA, USA.; Institute for Water, Environment and Health, United Nations University, Hamilton, Ontario, Canada., Ojha C; Department of Earth and Environmental Sciences, IISER Mohali, Punjab, India., Sherpa SF; Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA.; Institute at Brown for Environment and Society, Brown University, Providence, RI, USA., Nicholls RJ; Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK.
المصدر: Nature [Nature] 2024 Mar; Vol. 627 (8002), pp. 108-115. Date of Electronic Publication: 2024 Mar 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Cities*/statistics & numerical data , City Planning*/methods , City Planning*/trends , Floods*/prevention & control , Floods*/statistics & numerical data , Motion* , Altitude* , Sea Level Rise*/statistics & numerical data, United States ; Datasets as Topic ; Acclimatization
مستخلص: The sea level along the US coastlines is projected to rise by 0.25-0.3 m by 2050, increasing the probability of more destructive flooding and inundation in major cities 1-3 . However, these impacts may be exacerbated by coastal subsidence-the sinking of coastal land areas 4 -a factor that is often underrepresented in coastal-management policies and long-term urban planning 2,5 . In this study, we combine high-resolution vertical land motion (that is, raising or lowering of land) and elevation datasets with projections of sea-level rise to quantify the potential inundated areas in 32 major US coastal cities. Here we show that, even when considering the current coastal-defence structures, further land area of between 1,006 and 1,389 km 2 is threatened by relative sea-level rise by 2050, posing a threat to a population of 55,000-273,000 people and 31,000-171,000 properties. Our analysis shows that not accounting for spatially variable land subsidence within the cities may lead to inaccurate projections of expected exposure. These potential consequences show the scale of the adaptation challenge, which is not appreciated in most US coastal cities.
(© 2024. The Author(s).)
References: Haer, T., Kalnay, E., Kearney, M. & Moll, H. Relative sea-level rise and the conterminous United States: consequences of potential land inundation in terms of population at risk and GDP loss. Glob. Environ. Change 23, 1627–1636 (2013). (PMID: 10.1016/j.gloenvcha.2013.09.005)
Shirzaei, M. & Bürgmann, R. Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Sci. Adv. 4, eaap9234 (2018). (PMID: 29536042584628310.1126/sciadv.aap9234)
Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities along U.S. Coastlines. NOAA Technical Report NOS 01. (National Oceanic and Atmospheric Administration, 2022).
Dinar, A. et al. We lose ground: global assessment of land subsidence impact extent. Sci. Total Environ. 786, 147415 (2021). (PMID: 3398470110.1016/j.scitotenv.2021.147415)
Ingebritsen, S. E. & Galloway, D. L. Coastal subsidence and relative sea level rise. Environ. Res. Lett. 9, 091002 (2014). (PMID: 10.1088/1748-9326/9/9/091002)
Woodruff, J., Irish, J. & Camargo, S. Coastal flooding by tropical cyclones and sea-level rise. Nature 504, 44–52 (2013). (PMID: 2430514710.1038/nature12855)
Kossin, J. P., Knapp, K. R., Olander, T. L. & Velden, C. S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl Acad. Sci. USA 117, 11975–11980 (2020). (PMID: 32424081727571110.1073/pnas.1920849117)
Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021). (PMID: 33980822811522510.1038/s41467-021-22314-w)
Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007). (PMID: 10.1177/0956247807076960)
Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010). (PMID: 2055870710.1126/science.1185782)
Aerts, J. C. J. H. et al. Evaluating flood resilience strategies for coastal megacities. Science 344, 473–475 (2014). (PMID: 2478606410.1126/science.1248222)
Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS ONE 10, e0118571 (2015). (PMID: 25760037436796910.1371/journal.pone.0118571)
Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28–39 (2020). (PMID: 10.1038/s43017-019-0002-9)
Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011). (PMID: 10.1007/s10712-011-9119-1)
Sweet, W. V. & Park, J. From the extreme to the mean: acceleration and tipping points of coastal inundation from sea level rise. Earths Future 2, 579–600 (2014). (PMID: 10.1002/2014EF000272)
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 9 (Cambridge Univ. Press, 2021).
Nicholls, R. J. et al. Stabilization of global temperature at 1.5 °C and 2.0 °C: implications for coastal areas. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20160448 (2018). (PMID: 296103805897821)
Nicholls, R. J. et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change 11, 338–342 (2021). (PMID: 10.1038/s41558-021-00993-z)
Sherpa, S. F., Shirzaei, M. & Ojha, C. Disruptive role of vertical land motion in future assessments of climate change-driven sea-level rise and coastal flooding hazards in the Chesapeake Bay. J. Geophys. Res. Solid Earth 128, e2022JB025993 (2023). (PMID: 10.1029/2022JB025993)
Thatcher, C. A., Brock, J. C. & Pendleton, E. A. Economic vulnerability to sea-level rise along the Northern U.S. Gulf coast. J. Coast. Res. 63, 234–243 (2013). (PMID: 10.2112/SI63-017.1)
Marsooli, R., Lin, N., Emanuel, K. & Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 10, 3785 (2019). (PMID: 31439853670645010.1038/s41467-019-11755-z)
Fast Facts: Economics and Demographics. NOAA Office for Coastal Management https://coast.noaa.gov/states/fast-facts/economics-and-demographics.html (2022).
Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017). (PMID: 2866349610.1126/science.aal4369)
Ezer, T. & Atkinson, L. P. Accelerated flooding along the US East Coast: on the impact of sea‐level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earths Future 2, 362–382 (2014). (PMID: 10.1002/2014EF000252)
Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017). (PMID: 28522843543704610.1038/s41598-017-01362-7)
Blackwell, E., Shirzaei, M., Ojha, C. & Werth, S. Tracking California’s sinking coast from space: implications for relative sea-level rise. Sci. Adv. 6, eaba4551 (2020). (PMID: 32789170739948210.1126/sciadv.aba4551)
Ohenhen, L. O., Shirzaei, M., Ohja, C. & Kirwan, M. Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion. Nat. Commun. 14, 2038 (2023). (PMID: 370411681009005710.1038/s41467-023-37853-7)
Sills, G. L. et al. Overview of New Orleans levee failures: lessons learned and their impact on national levee design and assessment. J. Geotech. Geoenviron. Eng. 134, 556–565 (2008). (PMID: 10.1061/(ASCE)1090-0241(2008)134:5(556))
Sweet, W. V. et al. Patterns and Projections of High Tide Flooding along the U.S. Coastline Using a Common Impact Threshold. NOAA Technical Report NOS CO-OPS 086 (National Oceanic and Atmospheric Administration, 2018).
Shadrick, J. R. et al. Sea-level rise will likely accelerate rock coast cliff retreat rates. Nat. Commun. 13, 7005 (2022). (PMID: 36400787967483910.1038/s41467-022-34386-3)
Herrera-García, G. et al. Mapping the global threat of land subsidence. Science 371, 34–36 (2021). (PMID: 3338436810.1126/science.abb8549)
Candela, T. & Koster, K. The many faces of anthropogenic subsidence. Science 376, 1381–1382 (2022). (PMID: 3573776710.1126/science.abn3676)
Garner, G. G. et al. IPCC AR6 Sea-Level Rise Projections. https://podaac.jpl.nasa.gov/announcements/2021-08-09-Sea-level-projections-from-the-IPCC-6th-Assessment-Report (2021).
Islam, S. N. & Winkel, J. Climate Change and Social Inequality. Working Paper No. 152 (United Nations Department of Economic and Social Affairs, 2017).
Brouwer, R., Akter, S., Brander, L. & Haque, E. Socioeconomic vulnerability and adaptation to environmental risk: a case study of climate change and flooding in Bangladesh. Risk Anal. 27, 313–326 (2007). (PMID: 1751170010.1111/j.1539-6924.2007.00884.x)
Rentschler, J., Salhab, M. & Jafino, B. A. Flood exposure and poverty in 188 countries. Nat. Commun. 13, 3527 (2022). (PMID: 35764617924008110.1038/s41467-022-30727-4)
United States Environmental Protection Agency. Climate Change and Social Vulnerability in the United States: A Focus on Six Impacts. EPA 430-R-21-003. www.epa.gov/cira/social-vulnerability-report (2021).
Brown, D. L. On Mississippi’s Gulf Coast, what was lost and gained from Katrina’s fury. Washington Post https://www.washingtonpost.com/local/on-mississippis-gulf-coast-what-was-lost-and-gained-from-katrinas-fury/2015/08/26/2c00956a-4313-11e5-846d-02792f854297_story.html (26 August 2015).
Hauer, M. E. et al. Assessing population exposure to coastal flooding due to sea level rise. Nat. Commun. 12, 6900 (2021). (PMID: 34824267861719010.1038/s41467-021-27260-1)
Haasnoot, M. et al. Generic adaptation pathways for coastal archetypes under uncertain sea-level rise. Environ. Res. Commun. 1, 071006 (2019). (PMID: 10.1088/2515-7620/ab1871)
Nicholls, R. J. et al. Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes: Exposure Estimates. OECD Environment Working Papers, No. 1 (OECD Publishing, 2008).
Hallegatte, S. et al. Future flood losses in major coastal cities. Nat. Clim. Change 3, 802–806 (2013). (PMID: 10.1038/nclimate1979)
Sung, K., Jeong, H., Sangwan, N. & Yu, D. J. Effects of flood control strategies on flood resilience under sociohydrological disturbances. Water Resour. Res. 54, 2661–2680 (2018). (PMID: 10.1002/2017WR021440)
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013). (PMID: 10.1038/nclimate1970)
Dixon, T. et al. Space geodesy: subsidence and flooding in New Orleans. Nature 441, 587–588 (2006). (PMID: 1673865110.1038/441587a)
Zoysa, R. S. et al. The ‘wickedness’ of governing land subsidence: policy perspectives from urban southeast Asia. PLoS ONE 16, e0250208 (2021). (PMID: 10.1371/journal.pone.0250208)
Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021). (PMID: 10.1038/s43017-020-00115-x)
Fang, J. et al. Benefits of subsidence control for coastal flooding in China. Nat. Commun. 13, 6946 (2022). (PMID: 36376281966370410.1038/s41467-022-34525-w)
Cozannet, G. L. et al. Adaptation to multi-meter sea-level rise should start now. Environ. Res. Lett. 18, 091001 (2023). (PMID: 10.1088/1748-9326/acef3f)
Miller, M. M. & Shirzaei, M. Assessment of future flood hazards for southeastern Texas: synthesizing subsidence, sea-level rise, and storm surge scenarios. Geophys. Res. Lett. 48, e2021GL092544 (2021). (PMID: 10.1029/2021GL092544)
Barnard, P. L. et al. Future Coastal Hazards Along the U.S. North and South Carolina Coasts. US Geological Survey data release. https://doi.org/10.5066/P9W91314 (2023).
Barnard, P. L. et al. Future Coastal Hazards Along the U.S. Atlantic Coast. US Geological Survey data release. https://doi.org/10.5066/P9BQQTCI (2023).
Wegnüller, U. et al. Sentinel-1 support in the GAMMA software. Proc. Comput. Sci. 100, 1305–1312 (2016). (PMID: 10.1016/j.procs.2016.09.246)
Werner, C., Wegmüller, U., Strozzi, T., & Wiesmann, A. Gamma SAR and interferometric processing software. ERS - Envisat Symposium (2000).
Shirzaei, M. & Bürgmann, R. Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms. Geophys. Res. Lett. 39, L01305 (2012). (PMID: 10.1029/2011GL049971)
Shirzaei, M. A wavelet-based multitemporal DInSAR algorithm for monitoring ground surface motion. IEEE Geosci. Remote Sens. Lett. 10, 456–460 (2013). (PMID: 10.1109/LGRS.2012.2208935)
Shirzaei, M., Bürgmann, R. & Fielding, E. J. Applicability of Sentinel-1 terrain observation by progressive scans multitemporal interferometry for monitoring slow ground motions in the San Francisco Bay Area. Geophys. Res. Lett. 44, 2733–2742 (2017). (PMID: 10.1002/2017GL072663)
Shirzaei, M., Manga, M. & Zhai, G. Hydraulic properties of injection formations constrained by surface deformation. Earth Planet. Sci. Lett. 515, 125–134 (2019). (PMID: 10.1016/j.epsl.2019.03.025)
Lee, J.-C. & Shirzaei, M. Novel algorithms for pair and pixel selection and atmospheric error correction in multitemporal InSAR. Remote Sens. Environ. 286, 113447 (2023). (PMID: 10.1016/j.rse.2022.113447)
Ojha, C., Shirzaei, M., Werth, S., Argus, D. F. & Farr, T. G. Sustained groundwater loss in California’s Central Valley exacerbated by intense drought periods. Water Resour. Res. 54, 4449–4460 (2018). (PMID: 30197456612045910.1029/2017WR022250)
Blewitt, G., Hammond, W. C. & Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 99, EO104623 (2018). (PMID: 10.1029/2018EO104623)
Allison, M. et al. Global risks and research priorities for coastal subsidence. Eos 97, 1–14 (2016). (PMID: 10.1029/2016EO055013)
Karegar, M. A., Dixon, T. H., Malservisi, R., Kusche, J. & Engelhart, S. E. Nuisance flooding and relative sea-level rise: the importance of present-day land motion. Sci. Rep. 7, 11197 (2017). (PMID: 28894195559394410.1038/s41598-017-11544-y)
Kondolf, G. M. et al. Save the Mekong Delta from drowning. Science 376, 583–585 (2022). (PMID: 3553690610.1126/science.abm5176)
Karegar, M. A., Dixon, T. H. & Engelhart, S. E. Subsidence along the Atlantic Coast of North America: insights from GPS and late Holocene relative sea level data. Geophys. Res. Lett. 43, 3126–3133 (2016). (PMID: 10.1002/2016GL068015)
Morton, R., Buster, N. A. & Krohn, M. Subsurface controls on historical subsidence rates and associated wetland loss in southcentral Louisiana. Gulf Coast Assoc. Geol. Soc. Trans. 52, 767–778 (2002).
Kolker, A. S., Allison, M. A. & Hameed, S. An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 38, L21404 (2011). (PMID: 10.1029/2011GL049458)
Jones, C. E. et al. Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana. J. Geophys. Res. Solid Earth 121, 3867–3887 (2016). (PMID: 10.1002/2015JB012636)
Peltier, W. R., Argus, D. F. & Drummond, R. Comment on “An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al. J. Geophys. Res. Solid Earth 123, 2019–2028 (2018). (PMID: 10.1002/2016JB013844)
Digital Coast: Data Access Viewer. NOAA. https://coast.noaa.gov/dataviewer/#/lidar/search/ (2022).
Tide and Current Datums data sets. NOAA. https://tidesandcurrents.noaa.gov/stations.html?type=Datums (2022). Accessed [2022-08-04].
Hinkel, J., Nicholls, R. J., Vafeidis, A. T., Tol, R. S. J. & Avagianou, T. Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitig. Adapt. Strateg. Glob. Chang. 15, 703–719 (2010). (PMID: 10.1007/s11027-010-9237-y)
Ramirez, J. A., Lichter, M., Coulthard, T. J. & Skinner, C. Hyper-resolution mapping of regional storm surge and tide flooding: comparison of static and dynamic models. Nat. Hazards 82, 571–590 (2016). (PMID: 10.1007/s11069-016-2198-z)
Vernimmen, R. & Hooijer, A. New lidar-based elevation model shows greatest increase in global coastal exposure to flooding to be caused by early-stage sea-level rise. Earths Future 11, e2022EF002880 (2023). (PMID: 10.1029/2022EF002880)
United States Army Corps of Engineers. National Levee Database. https://levees.sec.usace.army.mil/#/ (2022).
تواريخ الأحداث: Date Created: 20240306 Date Completed: 20240308 Latest Revision: 20240311
رمز التحديث: 20240311
مُعرف محوري في PubMed: PMC10917664
DOI: 10.1038/s41586-024-07038-3
PMID: 38448695
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07038-3