دورية أكاديمية

Surgical Modulation of Pulmonary Artery Shear Stress: A Patient-Specific CFD Analysis of the Norwood Procedure.

التفاصيل البيبلوغرافية
العنوان: Surgical Modulation of Pulmonary Artery Shear Stress: A Patient-Specific CFD Analysis of the Norwood Procedure.
المؤلفون: Chidyagwai SG; Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA., Kaplan MS; Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA.; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA., Jensen CW; Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA.; Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC, USA., Chen JS; Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA., Chamberlain RC; Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA., Hill KD; Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA., Barker PCA; Division of Pediatric Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA., Slesnick TC; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA., Randles A; Department of Biomedical Engineering, Duke University, 534 Research Drive, 27708, Durham, NC, USA. amanda.randles@duke.edu.
المصدر: Cardiovascular engineering and technology [Cardiovasc Eng Technol] 2024 Aug; Vol. 15 (4), pp. 431-442. Date of Electronic Publication: 2024 Mar 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101531846 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-4098 (Electronic) Linking ISSN: 1869408X NLM ISO Abbreviation: Cardiovasc Eng Technol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Springer
مواضيع طبية MeSH: Pulmonary Artery*/physiopathology , Pulmonary Artery*/surgery , Pulmonary Artery*/diagnostic imaging , Hypoplastic Left Heart Syndrome*/surgery , Hypoplastic Left Heart Syndrome*/physiopathology , Hypoplastic Left Heart Syndrome*/diagnostic imaging , Norwood Procedures* , Models, Cardiovascular* , Stress, Mechanical* , Hemodynamics*, Humans ; Pulmonary Circulation ; Patient-Specific Modeling ; Cineangiography ; Blood Flow Velocity ; Infant, Newborn ; Treatment Outcome
مستخلص: Purposr: This study created 3D CFD models of the Norwood procedure for hypoplastic left heart syndrome (HLHS) using standard angiography and echocardiogram data to investigate the impact of shunt characteristics on pulmonary artery (PA) hemodynamics. Leveraging routine clinical data offers advantages such as availability and cost-effectiveness without subjecting patients to additional invasive procedures.
Methods: Patient-specific geometries of the intrathoracic arteries of two Norwood patients were generated from biplane cineangiograms. "Virtual surgery" was then performed to simulate the hemodynamics of alternative PA shunt configurations, including shunt type (modified Blalock-Thomas-Taussig shunt (mBTTS) vs. right ventricle-to-pulmonary artery shunt (RVPAS)), shunt diameter, and pulmonary artery anastomosis angle. Left-right pulmonary flow differential, Q p /Q s , time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were evaluated.
Results: There was strong agreement between clinically measured data and CFD model output throughout the patient-specific models. Geometries with a RVPAS tended toward more balanced left-right pulmonary flow, lower Q p /Q s , and greater TAWSS and OSI than models with a mBTTS. For both shunt types, larger shunts resulted in a higher Q p /Q s and higher TAWSS, with minimal effect on OSI. Low TAWSS areas correlated with regions of low flow and changing the PA-shunt anastomosis angle to face toward low TAWSS regions increased TAWSS.
Conclusion: Excellent correlation between clinically measured and CFD model data shows that 3D CFD models of HLHS Norwood can be developed using standard angiography and echocardiographic data. The CFD analysis also revealed consistent changes in PA TAWSS, flow differential, and OSI as a function of shunt characteristics.
(© 2024. The Author(s) under exclusive licence to Biomedical Engineering Society.)
References: Barron, D. J.; Ramchandani, B.; Murala, J.; Stumper, O.; De Giovanni, J. V.; Jones, T. J.; Stickley, J.; Brawn, W. J. Surgery Following Primary Right Ventricular Outflow Tract Stenting for Fallot’s Tetralogy and Variants: Rehabilitation of Small Pulmonary Arteries. European Journal of cardio-thoracic Surgery 2013, 44 (4), 656–662. (PMID: 10.1093/ejcts/ezt18823650024)
Bradley, S. M.; Simsic, J. M.; McQuinn, T. C.; Habib, D. M.; Shirali, G. S.; Atz, A. M. Hemodynamic Status After the Norwood Procedure: A Comparison of Right Ventricle–to–Pulmonary Artery Connection Versus Modified Blalock-Taussig Shunt. The Annals of thoracic surgery 2004, 78 (3), 933–941.
Mair, R.; Tulzer, G.; Sames, E.; Gitter, R.; Lechner, E.; Steiner, J.; Hofer, A.; Geiselseder, G.; Gross, C. Right Ventricular to Pulmonary Artery Conduit Instead of Modified Blalock-Taussig Shunt Improves Postoperative Hemodynamics in Newborns After the Norwood Operation. The Journal of Thoracic and Cardiovascular Surgery 2003, 126 (5), 1378–1384. (PMID: 10.1016/S0022-5223(03)00389-114666009)
Pizarro, C.; Malec, E.; Maher, K. O.; Januszewska, K.; Gidding, S. S.; Murdison, K. A.; Baffa, J. M.; Norwood, W. I. Right Ventricle to Pulmonary Artery Conduit Improves Outcome After Stage I Norwood for Hypoplastic Left Heart Syndrome. Circulation 2003, 108 (10_suppl_1), II–155. (PMID: 10.1161/01.cir.0000087390.94142.1d)
Griselli, M.; McGuirk, S. P.; Stümper, O.; Clarke, A. J.; Miller, P.; Dhillon, R.; Wright, J. G.; De Giovanni, J. V.; Barron, D. J.; Brawn, W. J. Influence of Surgical Strategies on Outcome After the Norwood Procedure. The Journal of Thoracic and cardiovascular surgery 2006, 131 (2), 418–426. (PMID: 10.1016/j.jtcvs.2005.08.06616434273)
Pruetz, J. D.; Badran, S.; Dorey, F.; Starnes, V. A.; Lewis, A. B. Differential Branch Pulmonary Artery Growth After the Norwood Procedure with Right Ventricle–Pulmonary Artery Conduit Versus Modified Blalock–Taussig Shunt in Hypoplastic Left Heart Syndrome. The Journal of Thoracic and Cardiovascular Surgery 2009, 137 (6), 1342–1348. (PMID: 10.1016/j.jtcvs.2009.03.01919464446)
Graham, E. M.; Atz, A. M.; Bradley, S. M.; Scheurer, M. A.; Bandisode, V. M.; Laudito, A.; Shirali, G. S. Does a Ventriculotomy Have Deleterious Effects Following Palliation in the Norwood Procedure Using a Shunt Placed from the Right Ventricle to the Pulmonary Arteries? Cardiology in the Young 2007, 17 (2), 145–150. (PMID: 10.1017/S104795110700013317244384)
Newburger JW, Sleeper LA, Frommelt PC, et al. Transplantation-free survival and interventions at 3 years in the single ventricle reconstruction trial. Circulation. 2014;129(20):2013–2020. doi: https://doi.org/10.1161/CIRCULATIONAHA.113.006191. (PMID: 10.1161/CIRCULATIONAHA.113.006191247051194029928)
Ohye RG, Sleeper LA, Mahony L, et al. Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med. 2010;362(21):1980–1992. doi: https://doi.org/10.1056/NEJMoa0912461. (PMID: 10.1056/NEJMoa0912461205051772891109)
JW, N.; LA, S.; al., G. J. et. Transplant-Free Survival and Interventions at 6 Years in the SVR Trial. Circulation 2018, 137, 2246–2253. (PMID: 10.1161/CIRCULATIONAHA.117.029375)
Kobayashi, Y.; Kotani, Y.; Kuroko, Y.; Kawabata, T.; Sano, S.; Kasahara, S. Norwood Procedure with Right Ventricle to Pulmonary Artery Conduit: A Single-Centre 20-Year Experience. European Journal of Cardio-Thoracic Surgery 2020, 58 (2), 230–236. (PMID: 10.1093/ejcts/ezaa04132211760)
Rumball, E. M.; McGuirk, S. P.; Stümper, O.; Laker, S. J.; Giovanni, J. V. de; Wright, J. G.; Barron, D. J.; Brawn, W. J. The RV–PA Conduit Stimulates Better Growth of the Pulmonary Arteries in Hypoplastic Left Heart Syndrome. European Journal of cardio-thoracic Surgery 2005, 27 (5), 801–806.
Rhodes, J.; Ubeda-Tikkanen, A.; Clair, M.; Fernandes, S. M.; Graham, D. A.; Milliren, C. E.; Daly, K. P.; Mullen, M. P.; Landzberg, M. J. Effect of Inhaled Iloprost on the Exercise Function of Fontan Patients: A Demonstration of Concept. International Journal of cardiology 2013, 168 (3), 2435–2440. (PMID: 10.1016/j.ijcard.2013.03.01423545150)
Gerrah, R.; Haller, S. J. Computational Fluid Dynamics: A Primer for Congenital Heart Disease Clinicians. Asian Cardiovascular and Thoracic Annals 2020, 28 (8), 520–532. (PMID: 10.1177/021849232095716332878458)
Bove EL, Migliavacca F, de Leval MR, et al. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock-Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg. 2008;136(2):312–320.e2. doi: https://doi.org/10.1016/j.jtcvs.2007.04.078. (PMID: 10.1016/j.jtcvs.2007.04.07818692636)
Mroczek T, Małota Z, Wójcik E, Nawrat Z, Skalski J. Norwood with right ventricle-to-pulmonary artery conduit is more effective than Norwood with Blalock-Taussig shunt for hypoplastic left heart syndrome: mathematic modeling of hemodynamics. Eur J Cardiothorac Surg. 2011;40(6):1412–1418. doi: https://doi.org/10.1016/j.ejcts.2011.03.033. (PMID: 10.1016/j.ejcts.2011.03.03321546259)
Moghadam ME, Migliavacca F, Vignon-Clementel IE, Hsia TY, Marsden AL; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Optimization of shunt placement for the Norwood surgery using multi-domain modeling. J Biomech Eng. 2012;134(5):051002. doi: https://doi.org/10.1115/1.4006814. (PMID: 10.1115/1.400681422757490)
Piskin S, Altin HF, Yildiz O, Bakir I, Pekkan K. Hemodynamics of patient-specific aorta-pulmonary shunt configurations. J Biomech. 2017;50:166–171. doi: https://doi.org/10.1016/j.jbiomech.2016.11.014. (PMID: 10.1016/j.jbiomech.2016.11.01427866675)
Chen, S. J.; Carroll, J. D. 3-d Reconstruction of Coronary Arterial Tree to Optimize Angiographic Visualization. IEEE Transactions on medical imaging 2000, 19 (4), 318–336. (PMID: 10.1109/42.84818310909927)
Sankaran, S.; Esmaily Moghadam, M.; Kahn, A. M.; Tseng, E. E.; Guccione, J. M.; Marsden, A. L. Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery. Annals of biomedical engineering 2012, 40 (10), 2228–2242. (PMID: 10.1007/s10439-012-0579-3225391493570226)
Pirola, S.; Cheng, Z.; Jarral, O.; O’Regan, D.; Pepper, J.; Athanasiou, T.; Xu, X. On the Choice of Outlet Boundary Conditions for Patient-Specific Analysis of Aortic Flow Using Computational Fluid Dynamics. Journal of Biomechanics 2017, 60, 15–21. (PMID: 10.1016/j.jbiomech.2017.06.00528673664)
Sankaran, S.; Moghadam, M. E.; Kahn, A. M.; Tseng, E. E.; Guccione, J. M.; Marsden, A. L. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Annals of Biomedical Engineering 2012. https://doi.org/10.1007/s10439-012-0579-3 . (PMID: 10.1007/s10439-012-0579-3225391493570226)
Primeaux, J.; Salavitabar, A.; Lu, J. C.; Grifka, R. G.; Figueroa, C. A. Characterization of Post-Operative Hemodynamics Following the Norwood Procedure Using Population Data and Multi-Scale Modeling. Frontiers in Physiology 2021, 12, 603040. (PMID: 10.3389/fphys.2021.603040340545638155503)
Randles, A. P.; Kale, V.; Hammond, J.; Gropp, W.; Kaxiras, E. Performance Analysis of the Lattice Boltzmann Model Beyond Navier-Stokes. In 2013 IEEE 27th international symposium on parallel and distributed processing; IEEE, 2013; pp 1063–1074.
Randles, A.; Draeger, E. W.; Bailey, P. E. Massively Parallel Simulations of Hemodynamics in the Primary Large Arteries of the Human Vasculature. Journal of computational science 2015, 9, 70–75. (PMID: 10.1016/j.jocs.2015.04.003291520115693253)
Feiger, B.; Vardhan, M.; Gounley, J.; Mortensen, M.; Nair, P.; Chaudhury, R.; Frakes, D.; Randles, A. Suitability of Lattice Boltzmann Inlet and Outlet Boundary Conditions for Simulating Flow in Image-Derived Vasculature. International journal for numerical methods in biomedical engineering 2019, 35 (6), e3198.
Pedley, T. J.; Fung, Y. The Fluid Mechanics of Large Blood Vessels. 1980.
Hsia, T. Y.; Cosentino, D.; Corsini, C.; Pennati, G.; Dubini, G.; Migliavacca, F. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical norwood palliations for hypoplastic left heart syndrome. Circulation 2011, 124 (11 SUPPL. 1), 204–210. https://doi.org/10.1161/CIRCULATIONAHA.110.010769 .
Ohye, R. G.; Sleeper, L. A.; Mahony, L.; Newburger, J. W.; Pearson, G. D.; Lu, M.; Goldberg, C. S.; Tabbutt, S.; Frommelt, P. C.; Ghanayem, N. S.; others. Comparison of Shunt Types in the Norwood Procedure for Single-Ventricle Lesions. New England Journal of Medicine 2010, 362 (21), 1980–1992. (PMID: 10.1056/NEJMoa091246120505177)
Corsini, C.; Baker, C.; Kung, E.; Schievano, S.; Arbia, G.; Baretta, A.; Biglino, G.; Migliavacca, F.; Dubini, G.; Pennati, G.; others. An Integrated Approach to Patient-Specific Predictive Modeling for Single Ventricle Heart Palliation. Computer methods in biomechanics and biomedical engineering 2014, 17 (14), 1572–1589. (PMID: 10.1080/10255842.2012.75825423343002)
Raja, S. G.; Atamanyuk, I.; Tsang, V. T. Impact of Shunt Type on Growth of Pulmonary Arteries After Norwood Stage I Procedure: Current Best Available Evidence. World Journal for Pediatric and Congenital Heart Surgery 2011, 2 (1), 90–96. (PMID: 10.1177/215013511038451323804938)
Tang BT, Pickard SS, Chan FP, Tsao PS, Taylor CA, Feinstein JA. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study. Pulm Circ. 2012;2(4):470–476. doi: https://doi.org/10.4103/2045-8932.105035. (PMID: 10.4103/2045-8932.105035233729313555417)
Chatzizisis, Y. S.; Jonas, M.; Coskun, A. U.; Beigel, R.; Stone, B. V.; Maynard, C.; Gerrity, R. G.; Daley, W.; Rogers, C.; Edelman, E. R.; Feldman, C. L.; Stone, P. H. Prediction of the localization of high-risk coronary atherosclerotic plaques based on low endothelial shear stress-an intravascular ultrasound and histopathology natural history study. Circulation 2008, 117 (8), 993–1002. https://doi.org/10.1161/CIRCULATIONAHA.107.695254 . (PMID: 10.1161/CIRCULATIONAHA.107.69525418250270)
Ene-Iordache, B.; Remuzzi, A. Blood Flow in Idealized Vascular Access for Hemodialysis: A Review of Computational Studies. Cardiovascular Engineering and Technology 2017, 8 (3), 295–312. (PMID: 10.1007/s13239-017-0318-x28664239)
Tang, B. T.; Pickard, S. S.; Chan, F. P.; Tsao, P. S.; Taylor, C. A.; Feinstein, J. A. Wall Shear Stress Is Decreased in the Pulmonary Arteries of Patients with Pulmonary Arterial Hypertension: An Image-Based, Computational Fluid Dynamics Study. Pulmonary Circulation 2012, 2 (4), 470–476. (PMID: 10.4103/2045-8932.105035233729313555417)
Arnaz A, Pişkin Ş, Oğuz GN, Yalçınbaş Y, Pekkan K, Sarıoğlu T. Effect of modified Blalock-Taussig shunt anastomosis angle and pulmonary artery diameter on pulmonary flow. Anatol J Cardiol. 2018;20(1):2–8. doi: https://doi.org/10.14744/AnatolJCardiol.2018.54810. (PMID: 10.14744/AnatolJCardiol.2018.54810299523726237788)
Yang W, Dong M, Rabinovitch M, Chan FP, Marsden AL, Feinstein JA. Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients. Biomech Model Mechanobiol. 2019;18(3):779–796. doi: https://doi.org/10.1007/s10237-018-011140.
Vardhan, M. et al. The importance of side branches in modeling 3D hemodynamics from angiograms for patients with coronary artery disease. Sci Rep 9, 8854 (2019). (PMID: 10.1038/s41598-019-45342-5312221116586809)
Vardhan, M. et al. Non-invasive characterization of complex coronary lesions. Sci Rep 11, 8145 (2021). (PMID: 10.1038/s41598-021-86360-6338540768047040)
Feiger, B. et al. Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in image-derived vasculature. Int J Numer Meth Biomed Engng e3198 (2019) doi: https://doi.org/10.1002/cnm.3198 .
معلومات مُعتمدة: DP5OD019876 United States NH NIH HHS; DP1AG082343 United States NH NIH HHS; DP5OD019876 United States NH NIH HHS; DP1AG082343 United States NH NIH HHS
فهرسة مساهمة: Keywords: Computational fluid dynamics; Coronary perfusion; Hypoplastic left heart syndrome; Norwood procedure
تواريخ الأحداث: Date Created: 20240308 Date Completed: 20240812 Latest Revision: 20240812
رمز التحديث: 20240813
DOI: 10.1007/s13239-024-00724-3
PMID: 38459240
قاعدة البيانات: MEDLINE
الوصف
تدمد:1869-4098
DOI:10.1007/s13239-024-00724-3