دورية أكاديمية

Protective effect of thymoquinone nanoemulsion in reducing the cardiotoxic effect of 5-fluorouracil in rats.

التفاصيل البيبلوغرافية
العنوان: Protective effect of thymoquinone nanoemulsion in reducing the cardiotoxic effect of 5-fluorouracil in rats.
المؤلفون: Karim B; Student Research Committee, Babol University of Medical Sciences, Babol, Iran., Arabameri M; Department of Pharmacology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran., Alimoradi F; Department of Pharmacology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran., Mansoori R; Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran., Moghadamnia AA; Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran., Kazemi S; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran., Hosseini SM; Department of Veterinary Pathology, Babol-Branch, Islamic Azad University, Babol, Iran.
المصدر: Drug development research [Drug Dev Res] 2024 Apr; Vol. 85 (2), pp. e22171.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8204468 Publication Model: Print Cited Medium: Internet ISSN: 1098-2299 (Electronic) Linking ISSN: 02724391 NLM ISO Abbreviation: Drug Dev Res Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Wiley-Liss
Original Publication: New York : Alan R. Liss, c1981-
مواضيع طبية MeSH: Cardiotoxicity*/drug therapy , Cardiotoxicity*/etiology , Cardiotoxicity*/prevention & control , Antioxidants*/pharmacology , Antioxidants*/metabolism , Benzoquinones*, Rats ; Male ; Animals ; Rats, Wistar ; Fluorouracil/toxicity ; Oxidative Stress
مستخلص: 5-Fluorouracil (5-FU), which is one of the most widely used chemotherapy drugs, has various side effects on the heart. Thymoquinone (TMQ), the main bioactive component of Nigella sativa, has antioxidant and protective effects against toxicity. In this study, we investigated the protective effect of thymoquinone against cardiotoxicity caused by 5-FU in vitro and in vivo models. H9C2 cells were exposed to 5-FU and TMQ, and cell viability was evaluated in their presence. Also, 25 male Wistar rats were divided into five control groups, 5-FU, 2.5, and 5 mg TMQ in nanoemulsion form (NTMQ) + 5-FU and 5 mg NTMQ. Cardiotoxicity was assessed through electrocardiography, cardiac enzymes, oxidative stress markers, and histopathology. 5-FU induced cytotoxicity in H9c2 cells, which improved dose-dependently with NTMQ cotreatment. 5-FU caused body weight loss, ECG changes (increased ST segment, prolonged QRS, and QTc), increased cardiac enzymes (aspartate aminotransferase [AST], creatine kinase-myocardial band [CK-MB], and lactate dehydrogenase [LDH]), oxidative stress (increased malondialdehyde, myeloperoxidase, nitric acid; decreased glutathione peroxidase enzyme activity), and histological damage such as necrosis, hyperemia, and tissue hyalinization in rats. NTMQ ameliorated these 5-FU-induced effects. Higher NTMQ dose showed greater protective effects. Thus, the results of our study indicate that NTMQ protects against 5-FU cardiotoxicity likely through antioxidant mechanisms. TMQ warrants further research as an adjuvant to alleviate 5-FU chemotherapy side effects.
(© 2024 Wiley Periodicals LLC.)
References: Adalı, F., Gonul, Y., Kocak, A., Yuksel, Y., Ozkececi, G., Ozdemir, C., Tunay, K., Bozkurt, M. F., & Sen, O. G. (2016). Effects of thymoquinone against cisplatin-induced cardiac injury in rats. Acta Cirurgica Brasileira, 31, 271-277.
Adıyaman, M. Ş., Adıyaman, Ö. A., Dağlı, A. F., Karahan, M. Z., & Dağlı, M. N. (2022). Prevention of doxorubicin-induced experimental cardiotoxicity by Nigella sativa in rats. Revista Portuguesa de Cardiologia, 41, 99-105.
Ahmad, S., & Beg, Z. H. (2013). Elucidation of mechanisms of actions of thymoquinone-enriched methanolic and volatile oil extracts from Nigella sativa against cardiovascular risk parameters in experimental hyperlipidemia. Lipids in Health and Disease, 12, 86.
Ahmed, A. (2013). Cardio protective effects of Nigella sativa oil on lead induced cardio toxicity: Anti inflammatory and antioxidant mechanism. Journal of Physiology and Pathophysiology, 4, 72-80.
Alam, M. F., Khan, G., Safhi, M. M., Alshahrani, S., Siddiqui, R., Sivagurunathan Moni, S., & Anwer, T. (2018). Thymoquinone ameliorates doxorubicin-induced cardiotoxicity in Swiss albino mice by modulating oxidative damage and cellular inflammation. Cardiology Research and Practice, 2018, 1-6.
Ballout, F., Habli, Z., Rahal, O. N., Fatfat, M., & Gali-Muhtasib, H. (2018). Thymoquinone-based nanotechnology for cancer therapy: Promises and challenges. Drug Discovery Today, 23, 1089-1098.
Barary, M., Hosseinzadeh, R., Kazemi, S., Liang, J. J., Mansoori, R., Sio, T. T., Hosseini, M., & Moghadamnia, A. A. (2022). The effect of propolis on 5-fluorouracil-induced cardiac toxicity in rats. Scientific Reports, 12, 8661.
Christensen, S., Van der Roest, B., Besselink, N., Janssen, R., Boymans, S., Martens, J. W. M., Yaspo, M.-L., Priestley, P., Kuijk, E., Cuppen, E., & Van Hoeck, A. (2019). 5-Fluorouracil treatment induces characteristic T>G mutations in human cancer. Nature Communications, 10, 4571.
Danaei, G. H., Memar, B., Ataee, R., & Karami, M. (2019). Protective effect of thymoquinone, the main component of Nigella sativa, against diazinon cardio-toxicity in rats. Drug and Chemical Toxicology, 42, 585-591.
Das, M., Babu, K., Reddy, N., & Srivastava, L. (2005). Oxidative damage of plasma proteins and lipids in epidemic dropsy patients: Alterations in antioxidant status. Biochimica et Biophysica Acta (BBA)-General Subjects, 1722, 209-217.
Ding, Y., Ding, C., Ye, N., Liu, Z., Wold, E. A., Chen, H., Wild, C., Shen, Q., & Zhou, J. (2016). Discovery and development of natural product oridonin-inspired anticancer agents. European Journal of Medicinal Chemistry, 122, 102-117.
Elmaci, I., & Altinoz, M. A. (2016). Thymoquinone: an edible redox-active quinone for the pharmacotherapy of neurodegenerative conditions and glial brain tumors. A short review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 83, 635-640.
Elmowafy, M., Samy, A., Raslan, M. A., Salama, A., Said, R. A., Abdelaziz, A. E., El-Eraky, W., El Awdan, S., & Viitala, T. (2016). Enhancement of bioavailability and pharmacodynamic effects of thymoquinone via nanostructured lipid carrier (NLC) formulation. AAPS PharmSciTech, 17, 663-672.
El-Sayyad, H. I., Ismail, M. F., Shalaby, F. M., Abou-El-Magd, R., Gaur, R. L., Fernando, A., Raj, M. H., & Ouhtit, A. (2009). Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. International Journal of Biological Sciences, 5, 466-473.
Entok, E., Ustuner, M. C., Ozbayer, C., Tekin, N., Akyuz, F., Yangi, B., Kurt, H., Degirmenci, I., & Gunes, H. V. (2014). Anti-inflammatuar and anti-oxidative effects of Nigella sativa L.: 18FDG-PET imaging of inflammation. Molecular Biology Reports, 41, 2827-2834.
Farag, M. M., Khalifa, A. A., Elhadidy, W. F., & Rashad, R. M. (2021). Thymoquinone dose-dependently attenuates myocardial injury induced by isoproterenol in rats via integrated modulations of oxidative stress, inflammation, apoptosis, autophagy, and fibrosis. Naunyn-Schmiedeberg's Archives of Pharmacology, 394, 1787-1801.
Farkhondeh, T., Samarghandian, S., & Borji, A. (2017). An overview on cardioprotective and anti-diabetic effects of thymoquinone. Asian Pacific Journal of Tropical Medicine, 10, 849-854.
Guarino, V., Sorrentino, L., & Ambrosio, L. (2002). Polycaprolactone: Synthesis, properties, and applications, Encyclopedia of Polymer Science and Technology (pp. 1-36). Wiley.
Kalam, M. A., Raish, M., Ahmed, A., Alkharfy, K. M., Mohsin, K., Alshamsan, A., Al-Jenoobi, F. I., Al-Mohizea, A. M., & Shakeel, F. (2017). Oral bioavailability enhancement and hepatoprotective effects of thymoquinone by self-nanoemulsifying drug delivery system. Materials Science and Engineering: C, 76, 319-329.
Karabulut, D., Ozturk, E., Kaymak, E., Akin, A. T., & Yakan, B. (2021). Thymoquinone attenuates doxorubicin-cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 35, e22618.
Katalinić, V., Salamunić, I., Pazanin, S., Mulić, R., Milisić, M., & Ropac, D. (2007). The antioxidant power and level of lipid peroxidation products in the sera of apparently healthy adult males. Collegium Antropologicum, 31, 165-171.
Koca, D., Salman, T., Unek, I. T., Oztop, I., Ellidokuz, H., Eren, M., & Yilmaz, U. (2011). Clinical and electrocardiography changes in patients treated with capecitabine. Chemotherapy, 57, 381-387.
Kosmas, C., Kallistratos, M. S., Kopterides, P., Syrios, J., Skopelitis, H., Mylonakis, N., Karabelis, A., & Tsavaris, N. (2008). Cardiotoxicity of fluoropyrimidines in different schedules of administration: A prospective study. Journal of Cancer Research and Clinical Oncology, 134, 75-82.
Kumar, S., Gupta, R. K., & Samal, N. (1995). 5-fluorouracil induced cardiotoxicity in albino rats. Materia Medica Polona. Polish Journal of Medicine and Pharmacy, 27, 63-66.
Liu, D., & Zhao, L. (2022). Thymoquinone-induced autophagy mitigates doxorubicin-induced H9c2 cell apoptosis. Experimental and Therapeutic Medicine, 24, 694.
Liu, H., Liu, H. Y., Jiang, Y. N., & Li, N. (2016). Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Molecular Medicine Reports, 13, 2836-2842.
Loh, H. K., Sahoo, K. C., Kishore, K., Ray, R., Nag, T. C., Kumari, S., & Arya, D. S. (2007). Effects of thalidomide on isoprenaline-induced acute myocardial injury: A haemodynamic, histopathological and ultrastructural study. Basic & Clinical Pharmacology & Toxicology, 100, 233-239.
Lu, Y., Feng, Y., Liu, D., Zhang, Z., Gao, K., Zhang, W., & Tang, H. (2018). Thymoquinone attenuates myocardial ischemia/reperfusion injury through activation of SIRT1 signaling. Cellular Physiology and Biochemistry, 47, 1193-1206.
Manjili, H. K., Malvandi, H., Mousavi, M. S., Attari, E., & Danafar, H. (2018). In vitro and in vivo delivery of artemisinin loaded PCL-PEG-PCL micelles and its pharmacokinetic study. Artificial Cells, Nanomedicine, and Biotechnology, 46, 926-936.
Miranda, K. M., Espey, M. G., & Wink, D. A. (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric oxide, 5, 62-71.
Mohamed, A., Shoker, A., Bendjelloul, F., Mare, A., Alzrigh, M., Benghuzzi, H., & Desin, T. (2003). Improvement of experimental allergic encephalomyelitis (EAE) by thymoquinone; an oxidative stress inhibitor. Biomedical Sciences Instrumentation, 39, 440-445.
Muhammad, R. N., Sallam, N., & El-Abhar, H. S. (2020). Activated ROCK/Akt/eNOS and ET-1/ERK pathways in 5-fluorouracil-induced cardiotoxicity: modulation by simvastatin. Scientific Reports, 10, 14693.
Nagi, M. N., Al-Shabanah, O. A., Hafez, M. M., & Sayed-Ahmed, M. M. (2011). Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 25, 135-142.
Nagi, M. N., & Mansour, M. A. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacological Research, 41, 283-289.
Numan, I. T., Hamad, M. N., Fadhil, A. A., & Najim, S. M. (2022). The possible cardio-protective effects of ethanolic artichoke extract against 5-fluorouracil induced cardiac toxicity in rats. Iraqi Journal of Pharmaceutical Sciences, 25, 1-5.
Öztürk, E., Kaymak, E., Akin, A. T., Karabulut, D., Ünsal, H. M., & Yakan, B. (2020). Thymoquinone is a protective agent that reduces the negative effects of doxorubicin in rat testis. Human & Experimental Toxicology, 39, 1364-1373.
Polk, A., Vaage-Nilsen, M., Vistisen, K., & Nielsen, D. L. (2013). Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: A systematic review of incidence, manifestations and predisposing factors. Cancer Treatment Reviews, 39, 974-984.
Rahat, I., Imam, S. S., Rizwanullah, M., Alshehri, S., Asif, M., Kala, C., & Taleuzzaman, M. (2021). Thymoquinone-entrapped chitosan-modified nanoparticles: Formulation optimization to preclinical bioavailability assessments. Drug Delivery, 28, 973-984.
Rathod, S., Agrawal, Y., Sherikar, A., Nakhate, K. T., Patil, C. R., Nagoor Meeran, M. F., Ojha, S., & Goyal, S. N. (2022). Thymoquinone produces cardioprotective effect in β-receptor stimulated myocardial infarcted rats via subsiding oxidative stress and inflammation. Nutrients, 14, 2742.
Rezkalla, S., Kloner, R. A., Ensley, J., Al-Sarraf, M., Revels, S., Olivenstein, A., Bhasin, S., Kerpel-Fronious, S., & Turi, Z. G. (1989). Continuous ambulatory ECG monitoring during fluorouracil therapy: a prospective study. Journal of Clinical Oncology, 7, 509-514.
Safarpour, S., Pirzadeh, M., Ebrahimpour, A., Shirafkan, F., Madani, F., Hosseini, M., Moghadamnia, A. A., & Kazemi, S. (2022). Protective effect of kaempferol and its nanoparticles on 5-fluorouracil-induced cardiotoxicity in rats. BioMed Research International, 2022, 2273000.
Safarpour, S., Safarpour, S., Pirzadeh, M., Moghadamnia, A. A., Ebrahimpour, A., Shirafkan, F., Mansoori, R., Kazemi, S., & Hosseini, M. (2022). Colchicine ameliorates 5-Fluorouracil-Induced cardiotoxicity in rats. Oxidative Medicine and Cellular Longevity, 2022, 6194532.
Samarghandian, S., Azimini-Nezhad, M., & Farkhondeh, T. (2016). The effects of Zataria multiflora on blood glucose, lipid profile and oxidative stress parameters in adult mice during exposure to bisphenol A. Cardiovascular & Hematological Disorders Drug Targets, 16, 41-46.
Sarkar, C., Jamaddar, S., Islam, T., Mondal, M., Islam, M. T., & Mubarak, M. S. (2021). Therapeutic perspectives of the black cumin component thymoquinone: A review. Food & Function, 12, 6167-6213.
Sengul, E., Gelen, V., & Gedikli, S. (2021). Cardioprotective activities of quercetin and rutin in sprague dawley rats treated with 5-fluorouracil. JAPS: Journal of Animal & Plant Sciences, 31(2), 423-431.
Shahab, M. S., Rizwanullah, M., Alshehri, S., & Imam, S. S. (2020). Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. International Journal of Biological Macromolecules, 163, 2392-2404.
Shiga, T., & Hiraide, M. (2020). Cardiotoxicities of 5-fluorouracil and other fluoropyrimidines. Current Treatment Options in Oncology, 21, 27.
Sorrentino, M. F., Kim, J., Foderaro, A. E., & Truesdell, A. G. (2012). 5-fluorouracil induced cardiotoxicity: Review of the literature. Cardiology journal, 19, 453-457.
Steger, F., Hautmann, M. G., & Kölbl, O. (2012). 5-FU-induced cardiac toxicity-an underestimated problem in radiooncology? Radiation Oncology, 7, 212.
Sun, X.-X., Dai, M.-S., & Lu, H. (2007). 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. Journal of Biological Chemistry, 282, 8052-8059.
Tsavarisabcdef, N., Kosmasabcdef, C., Vadiakabcdf, M., Efremidisbcdf, M., Zinelisbcdf, A., Beldecosbcdf, D., Sakelarioubcdf, D., Koufosbcdf, C., & Stamatelosabcde, G. (2002). Cardiotoxicity following different doses and schedules of 5-fluorouracil administration for malignancy-a survey of 427 patients. Signature, 8, 57.
Yang, C., Song, J., Hwang, S., Choi, J., Song, G., & Lim, W. (2021). Apigenin enhances apoptosis induction by 5-fluorouracil through regulation of thymidylate synthase in colorectal cancer cells. Redox Biology, 47, 102144.
Zhang, D., & Ma, J. (2018). Mitochondrial dynamics in rat heart induced by 5-fluorouracil. Medical Science Monitor, 24, 6666-6672.
فهرسة مساهمة: Keywords: 5-Fluorouracil; ECG; cardiotoxicity; oxidative stress; thymoquinone
المشرفين على المادة: 0 (Antioxidants)
O60IE26NUF (thymoquinone)
U3P01618RT (Fluorouracil)
0 (Benzoquinones)
تواريخ الأحداث: Date Created: 20240309 Date Completed: 20240311 Latest Revision: 20240311
رمز التحديث: 20240311
DOI: 10.1002/ddr.22171
PMID: 38459752
قاعدة البيانات: MEDLINE