دورية أكاديمية

Upregulated expression of lamin B receptor increases cell proliferation and suppresses genomic instability: implications for cellular immortalization.

التفاصيل البيبلوغرافية
العنوان: Upregulated expression of lamin B receptor increases cell proliferation and suppresses genomic instability: implications for cellular immortalization.
المؤلفون: En A; Graduate School of Nanobioscience, Yokohama City University, Japan., Takemoto K; Graduate School of Nanobioscience, Yokohama City University, Japan., Yamakami Y; Graduate School of Nanobioscience, Yokohama City University, Japan., Nakabayashi K; Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan., Fujii M; Graduate School of Nanobioscience, Yokohama City University, Japan.
المصدر: The FEBS journal [FEBS J] 2024 May; Vol. 291 (10), pp. 2155-2171. Date of Electronic Publication: 2024 Mar 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
مواضيع طبية MeSH: Cell Proliferation*/genetics , Cellular Senescence*/genetics , Genomic Instability*/genetics , Lamin B Receptor* , Receptors, Cytoplasmic and Nuclear*/genetics , Receptors, Cytoplasmic and Nuclear*/metabolism, Humans ; Antigens, Polyomavirus Transforming/genetics ; Antigens, Polyomavirus Transforming/metabolism ; Fibroblasts/metabolism ; Heterochromatin/genetics ; Heterochromatin/metabolism ; Lamin Type A/genetics ; Lamin Type A/metabolism ; Lamin Type B/genetics ; Lamin Type B/metabolism ; Tumor Suppressor Protein p53/genetics ; Tumor Suppressor Protein p53/metabolism ; Up-Regulation
مستخلص: Mammalian somatic cells undergo terminal proliferation arrest after a limited number of cell divisions, a phenomenon termed cellular senescence. However, cells acquire the ability to proliferate infinitely (cellular immortalization) through multiple genetic alterations. Inactivation of tumor suppressor genes such as p53, RB and p16 is important for cellular immortalization, although additional molecular alterations are required for cellular immortalization to occur. Here, we aimed to gain insights into these molecular alterations. Given that cellular immortalization is the escape of cells from cellular senescence, genes that regulate cellular senescence are likely to be involved in cellular immortalization. Because senescent cells show altered heterochromatin organization, we investigated the implications of lamin A/C, lamin B1 and lamin B receptor (LBR), which regulate heterochromatin organization, in cellular immortalization. We employed human immortalized cell lines, KMST-6 and SUSM-1, and found that expression of LBR was upregulated upon cellular immortalization and downregulated upon cellular senescence. In addition, knockdown of LBR induced cellular senescence with altered chromatin configuration. Additionally, enforced expression of LBR increased cell proliferation likely through suppression of genome instability in human primary fibroblasts that expressed the simian virus 40 large T antigen (TAg), which inactivates p53 and RB. Furthermore, expression of TAg or knockdown of p53 led to upregulated LBR expression. These observations suggested that expression of LBR might be upregulated to suppress genome instability in TAg-expressing cells, and, consequently, its upregulated expression assisted the proliferation of TAg-expressing cells (i.e. p53/RB-defective cells). Our findings suggest a crucial role for LBR in the process of cellular immortalization.
(© 2024 Federation of European Biochemical Societies.)
References: Hayflick L & Moorehead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585–621.
Campisi J (1997) The biology of replicative senescence. Eur J Cancer 33, 703–709.
Campisi J & d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8, 729–740.
Coppe JP, Desprez PY, Krtolica A & Campisi J (2010) The senescence‐associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5, 99–118.
Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522.
Lane DP & Benchimol S (1990) p53: oncogene or anti‐oncogene? Genes Dev 4, 1–8.
Shay JW, Pereira‐Smith OM & Wright WE (1991) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196, 33–39.
Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ & Lowe SW (2003) Rb‐mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716.
Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T, Young AR, Narita M, Perez‐Mancera PA, Bennett DC, Chong H et al. (2013) Redistribution of the lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27, 1800–1808.
Swanson EC, Manning B, Zhang H & Lawrence JB (2013) Higher‐order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol 203, 929–942.
Talamas JA & Capelson M (2015) Nuclear envelope and genome interactions in cell fate. Front Genet 6, 95.
Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L et al. (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598.
De Sandre‐Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M et al. (2003) Lamin a truncation in Hutchinson‐Gilford progeria. Science 300, 2055.
Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P et al. (2003) Recurrent de novo point mutations in lamin A cause Hutchinson‐Gilford progeria syndrome. Nature 423, 293–298.
Shimi T, Butin‐Israeli V, Adam SA, Hamanaka RB, Goldman AE, Lucas CA, Shumaker DK, Kosak ST, Chandel NS & Goldman RD (2011) The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 25, 2579–2593.
Freund A, Laberge RM, Demaria M & Campisi J (2012) Lamin B1 loss is a senescence‐associated biomarker. Mol Biol Cell 23, 2066–2075.
Olins AL, Rhodes G, Welch DB, Zwerger M & Olins DE (2010) Lamin B receptor: multi‐tasking at the nuclear envelope. Nucleus 1, 53–70.
Arai R, En A, Ukekawa R, Miki K, Fujii M & Ayusawa D (2016) Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells. Biochem Biophys Res Commun 473, 1078–1083.
Lukasova E, Kovařík A, Bačíková A, Falk M & Kozubek S (2017) Loss of lamin B receptor is necessary to induce cellular senescence. Biochem J 474, 281–300.
Arai R, En A, Takauji Y, Maki K, Miki K, Fujii M & Ayusawa D (2019) Lamin B receptor (LBR) is involved in the induction of cellular senescence in human cells. Mech Ageing Dev 178, 25–32.
En A, Takauji Y, Miki K, Ayusawa D & Fujii M (2020) Lamin B receptor plays a key role in cellular senescence induced by inhibition of the proteasome. FEBS Open Bio 10, 237–250.
Herman AB, Anerillas C, Harris SC, Munk R, Martindale JL, Yang X, Mazan‐Mamczarz K, Zhang Y, Heckenbach IJ, Scheibye‐Knudsen M et al. (2021) Reduction of lamin B receptor levels by miR‐340‐5p disrupts chromatin, promotes cell senescence and enhances senolysis. Nucleic Acids Res 49, 7389–7405.
Namba M, Nishitani K, Hyodoh F, Fukushima F & Kimoto T (1985) Neoplastic transformation of human diploid fibroblasts (KMST‐6) by treatment with 60Co gamma rays. Int J Cancer 35, 275–280.
Namba M, Nishitani K, Fukushima F & Kimoto T (1988) Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co‐60 gamma rays were transformed into tumorigenic cells with Ha‐ras oncogenes. Anticancer Res 8, 947–958.
Namba M, Nishitani K, Fukushima F, Kimoto T & Yuasa Y (1988) Multi‐step neoplastic transformation of normal human fibroblasts by Co‐60 gamma rays and Ha‐ras oncogenes. Mutat Res 199, 415–423.
Michishita E, Nakabayashi K, Suzuki T, Kaul SC, Ogino H, Fujii M, Mitsui Y & Ayusawa D (1999) 5‐Bromodeoxyuridine induces senescence‐like phenomena in mammalian cells regardless of cell type or species. J Biochem 126, 1052–1059.
Takauji Y, Wada T, Takeda A, Kudo I, Miki K, Fujii M & Ayusawa D (2016) Restriction of protein synthesis abolishes senescence features at cellular and organismal levels. Sci Rep 6, 18722.
Sliwinska MA, Mosieniak G, Wolanin K, Babik A, Piwocka K, Magalska A, Szczepanowska J, Fronk J & Sikora E (2009) Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells. Mech Ageing Dev 130, 24–32.
Wright WE, Pereira‐Smith OM & Shay JW (1989) Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol 9, 3088–3092.
Stewart N & Bacchetti S (1991) Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 180, 49–57.
Nakabayashi K, Ogata T, Fujii M, Tahara H, Ide T, Wadhwa R, Kaul SC, Mitsui Y & Ayusawa D (1997) Decrease in amplified telomeric sequences and induction of senescence markers by introduction of human chromosome 7 or its segments in SUSM‐1. Exp Cell Res 235, 345–353.
Ogino H, Nakabayashi K, Suzuki M, Takahashi E, Fujii M, Suzuki T & Ayusawa D (1998) Release of telomeric DNA from chromosomes in immortal human cells lacking telomerase activity. Biochem Biophys Res Commun 248, 223–227.
Shay JW, Van Der Haegen BA, Ying Y & Wright WE (1993) The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T‐antigen. Exp Cell Res 209, 45–52.
Lammerhirt L, Kappelmann‐Fenzl M, Fischer S, Pommer M, Zimmermann T, Kluge V, Matthies A, Kuphal S & Bosserhoff AK (2022) Knockdown of lamin B1 and the corresponding lamin B receptor leads to changes in heterochromatin state and senescence induction in malignant melanoma. Cells 11, 2154.
Fujii M, Ide T, Wadhwa R, Tahara H, Kaul SC, Mitsui Y, Ogata T, Oishi M & Ayusawa D (1995) Inhibitors of cGMP‐dependent protein kinase block senescence induced by inactivation of T antigen in SV40‐transformed immortal human fibroblasts. Oncogene 11, 627–634.
Eischen CM (2016) Genome stability requires p53. Cold Spring Harb Perspect Med 6, a026096.
En A, Takauji Y, Ayusawa D & Fujii M (2020) The role of lamin B receptor in the regulation of senescence‐associated secretory phenotype (SASP). Exp Cell Res 390, 111927.
Patil S, Deshpande S & Sengupta K (2023) Nuclear envelope protein lamin B receptor protects the genome from chromosomal instability and tumorigenesis. Hum Mol Genet 32, 745–763.
De Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA, Manivannan J, Peterson AL, Kreiling JA, Neretti N & Sedivy JM (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256.
Oberdoerffer P & Sinclair DA (2007) The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 8, 692–702.
Papamichos‐Chronakis M & Peterson CL (2013) Chromatin and the genome integrity network. Nat Rev Genet 14, 62–75.
De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD et al. (2019) L1 drives IFN in senescent cells and promotes age‐associated inflammation. Nature 566, 73–78.
Della Valle F, Reddy P, Yamamoto M, Liu P, Saera‐Vila A, Bensaddek D, Zhang H, Prieto Martinez J, Abassi L, Celii M et al. (2022) LINE‐1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci Transl Med 14, eabl6057.
Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E et al. (2011) Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self‐renewal. Cell Cycle 10, 3016–3030.
Miyata K, Imai Y, Hori S, Nishio M, Loo TM, Okada R, Yang L, Nakadai T, Maruyama R, Fujii R et al. (2021) Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer. Proc Natl Acad Sci USA 118, e2025647118.
Takauji Y, Kudo I, En A, Matsuo R, Hossain MN, Nakabayashi K, Miki K, Fujii M & Ayusawa D (2017) GNG11 (G‐protein subunit gamma 11) suppresses cell growth with induction of reactive oxygen species and abnormal nuclear morphology in human SUSM‐1 cells. Biochem Cell Biol 95, 517–523.
Ide A, Fujii M, Nakababashi K & Ayusawa D (1998) Suppression of senescence in normal human fibroblasts by introduction of dominant‐negative p53 mutants or human papilloma virus type 16 E6 protein. Biosci Biotechnol Biochem 62, 1458–1460.
Fujii M, Ide A, Nakabayashi K, Joguchi A, Ogino H & Ayusawa D (1999) The introduction of dominant‐negative p53 mutants suppresses temperature shift‐induced senescence in immortal human fibroblasts expressing a thermolabile SV40 large T antigen. J Biochem 125, 531–536.
Chomczynski P & Sacchi N (1987) Single‐step method of RNA isolation by acid guanidinium thiocyanate‐phenol‐chloroform extraction. Anal Biochem 162, 156–159.
En A, Watanabe K, Ayusawa D & Fujii M (2022) The key role of a basic domain of histone H2B N‐terminal tail in the action of 5‐bromodeoxyuridine to induce cellular senescence. FEBS J 290, 692–711.
معلومات مُعتمدة: 22K11730 Ministry of Education, Culture, Sports, Science and Technology
فهرسة مساهمة: Keywords: cellular immortalization; cellular senescence; heterochromatin; lamin B receptor
المشرفين على المادة: 0 (Antigens, Polyomavirus Transforming)
0 (Heterochromatin)
0 (Lamin B Receptor)
0 (Lamin Type A)
0 (Lamin Type B)
0 (Receptors, Cytoplasmic and Nuclear)
0 (Tumor Suppressor Protein p53)
تواريخ الأحداث: Date Created: 20240311 Date Completed: 20240516 Latest Revision: 20240809
رمز التحديث: 20240812
DOI: 10.1111/febs.17113
PMID: 38462947
قاعدة البيانات: MEDLINE
الوصف
تدمد:1742-4658
DOI:10.1111/febs.17113