دورية أكاديمية

Effects of deltamethrin exposure on the cytochrome P450 monooxygenases of Aedes albopictus (Skuse) larvae from a dengue-endemic region of northern part of West Bengal, India.

التفاصيل البيبلوغرافية
العنوان: Effects of deltamethrin exposure on the cytochrome P450 monooxygenases of Aedes albopictus (Skuse) larvae from a dengue-endemic region of northern part of West Bengal, India.
المؤلفون: Das P; Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India., Das S; Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India., Saha A; Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India., Raha D; Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India., Saha D; Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India.
المصدر: Medical and veterinary entomology [Med Vet Entomol] 2024 Sep; Vol. 38 (3), pp. 269-279. Date of Electronic Publication: 2024 Mar 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published for the Royal Entomological Society of London by Blackwell Scientific Publications Country of Publication: England NLM ID: 8708682 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2915 (Electronic) Linking ISSN: 0269283X NLM ISO Abbreviation: Med Vet Entomol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford ; Boston : Published for the Royal Entomological Society of London by Blackwell Scientific Publications, [c1987-
مواضيع طبية MeSH: Aedes*/genetics , Aedes*/drug effects , Aedes*/enzymology , Cytochrome P-450 Enzyme System*/genetics , Cytochrome P-450 Enzyme System*/metabolism , Dengue*/transmission , Insecticide Resistance*/genetics , Insecticides*/pharmacology , Larva*/drug effects , Larva*/enzymology , Larva*/genetics , Larva*/growth & development, Animals ; India ; Insect Proteins/genetics ; Insect Proteins/metabolism ; Nitriles/pharmacology ; Pyrethrins/pharmacology
مستخلص: Aedes albopictus is highly prevalent in the northern part of West Bengal and is considered to be responsible for the recent dengue outbreaks in this region. Control of this vector is largely relied on the use of synthetic pyrethroids, which can lead to the development of resistance. In the present study, larvae of three wild Ae. albopictus populations from the dengue-endemic regions were screened for deltamethrin resistance, and the role of cytochrome P450 monooxygenases (CYPs) was investigated in deltamethrin exposed and unexposed larvae. Two populations were incipient resistant, and one population was completely resistant against deltamethrin. Monooxygenase titration assay revealed the involvement of CYPs in deltamethrin resistance along with an induction effect of deltamethrin exposure. Gene expression studies revealed differential expression of five CYP6 family genes, CYP6A8, CYP6P12, CYP6A14, CYP6N3 and CYP6N6, with high constitutive expression of CYP6A8 and CYP6P12 in all the populations before and after deltamethrin exposure. From these findings, it was evident that CYPs play an important role in the development of deltamethrin resistance in the Ae. albopictus populations in this region.
(© 2024 Royal Entomological Society.)
References: Amezian, D., Nauen, R. & Le Goff, G. (2021) Transcriptional regulation of xenobiotic detoxification genes in insects—an overview. Pesticide Biochemistry and Physiology, 174, 104822.
Antonio‐Nkondjio, C., Fossog, B.T., Ndo, C., Djantio, B.M., Togouet, S.Z., Awono‐Ambene, P. et al. (2011) Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaounde (Cameroon): influence of urban agriculture and pollution. Malaria Journal, 10, 1–13.
Bellinato, D.F., Viana‐Medeiros, P.F., Araújo, S.C., Martins, A.J., Lima, J.B.P. & Valle, D. (2016) Resistance status to the insecticides temephos, deltamethrin, and diflubenzuron in Brazilian Aedes aegypti populations. BioMed Research International, 2016, 1–12.
Bharati, M., Rai, P. & Saha, D. (2019) Insecticide resistance in Aedes albopictus Skuse from sub‐Himalayan districts of West Bengal, India. Acta Tropica, 192, 104–111.
Bharati, M. & Saha, D. (2017) Insecticide susceptibility status and major detoxifying enzymes activities in Aedes albopictus (Skuse), vector of dengue and chikungunya in northern part of West Bengal, India. Acta Tropica, 170, 112–119.
Bharati, M. & Saha, D. (2021) Insecticide resistance status and biochemical mechanisms involved in Aedes mosquitoes: a scoping review. Asian Pacific Journal of Tropical Medicine, 14(2), 52–64.
Bisset, J.A., Marín, R., Rodríguez, M.M., Severson, D.W., Ricardo, Y., French, L. et al. (2013) Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. Journal of Medical Entomology, 50(2), 352–361.
Black, W.C., IV, Snell, T.K., Saavedra‐Rodriguez, K., Kading, R.C. & Campbell, C.L. (2021) From global to local—new insights into features of pyrethroid detoxification in vector mosquitoes. Insects, 12(4), 276.
Chatterjee, M., Ballav, S., Maji, A.K., Basu, N., Sarkar, B.C. & Saha, P. (2018) Polymorphisms in voltage‐gated sodium channel gene and susceptibility of Aedes albopictus to insecticides in three districts of northern West Bengal, India. PLoS Neglected Tropical Diseases, 12(1), e0006192.
Chen, H., Li, K., Wang, X., Yang, X., Lin, Y., Cai, F. et al. (2016) First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China. Infectious Diseases of Poverty, 5(3), 40–47.
David, J.P., Ismail, H.M., Chandor‐Proust, A. & Paine, M.J. (2013) Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito‐borne diseases and use of insecticides on earth. Philosophical Transactions of the Royal Society B, 368, 20120429.
Grigoraki, L., Lagnel, J., Kioulos, I., Kampouraki, A., Morou, E., Labbe, P. et al. (2015) Transcriptome profiling and genetic study reveal amplified carboxylesterase genes implicated in temephos resistance, in the Asian tiger mosquito Aedes albopictus. PLoS Neglected Tropical Diseases, 9(5), e0003771.
Hien, A.S., Soma, D.D., Hema, O., Bayili, B., Namountougou, M., Gnankiné, O. et al. (2017) Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae sl populations from cotton growing areas in Burkina Faso, West Africa. PLoS One, 12(3), e0173098.
Ishak, I.H., Jaal, Z., Ranson, H. & Wondji, C.S. (2015) Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasites and Vectors, 8(1), 1–3.
Ishak, I.H., Riveron, J.M., Ibrahim, S.S., Stott, R., Longbottom, J., Irving, H. et al. (2016) The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr‐free Malaysian populations of the dengue vector Aedes albopictus. Scientific Reports, 6(1), 1–13.
Jangir, P.K. & Prasad, A. (2022) Spatial distribution of insecticide resistance and susceptibility in Aedes aegypti and Aedes albopictus in India. International Journal of Tropical Insect Science, 42(2), 1019–1044.
Kakarla, S.G., Bhimala, K.R., Kadiri, M.R., Kumaraswamy, S. & Mutheneni, S.R. (2020) Dengue situation in India: suitability and transmission potential model for present and projected climate change scenarios. Science of the Total Environment, 739, 140336.
Khan, H.A.A., Akram, W., Shehzad, K. & Shaalan, E.A. (2011) First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasites & Vectors, 4(1), 1–11.
Koou, S.Y., Chong, C.S., Vythilingam, I., Ng, L.C. & Lee, C.Y. (2014) Pyrethroid resistance in Aedes aegypti larvae (Diptera: Culicidae) from Singapore. Journal of Medical Entomology, 51(1), 170–181.
Leong, C.S., Vythilingam, I., Wong, M.L., Sulaiman, W.Y.W. & Lau, Y.L. (2018) Aedes aegypti (Linnaeus) larvae from dengue outbreak areas in Selangor showing resistance to pyrethroids but susceptible to organophosphates. Acta Tropica, 185, 115–126.
Li, Y., Zhou, G., Zhong, D., Wang, X., Hemming‐Schroeder, E., David, R.E. et al. (2021) Widespread multiple insecticide resistance in the major dengue vector Aedes albopictus in Hainan Province, China. Pest Management Science, 77, 1945–1953.
Liu, N., Li, T., Reid, W.R., Yang, T. & Zhang, L. (2011) Multiple cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus. PLoS One, 6(8), e23403.
Liu, N., Xu, Q., Zhu, F. & Zhang, L.E. (2006) Pyrethroid resistance in mosquitoes. Insect Science, 13(3), 159–166.
Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real‐time quantitative PCR and the 2−ΔΔCt method. Methods, 25(4), 402–408.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.
Matowo, J., Kulkarni, M.A., Mosha, F.W., Oxborough, R.M., Kitau, J.A., Tenu, F. et al. (2010) Biochemical basis of permethrin resistancein Anopheles arabiensis from Lower Moshi, north‐eastern Tanzania. Malariajournal, 9, 1–9.
Matsuo, N. (2019) Discovery and development of pyrethroid insecticides. Proceedings of the Japan Academy, Series B, 95, 378–400.
Morales, D., Ponce, P., Cevallos, V., Espinosa, P., Vaca, D. & Quezada, W. (2019) Resistance status of Aedes aegypti to deltamethrin, malathion, and temephos in Ecuador. Journal of the American Mosquito Control Association, 35(2), 113–122.
Mukhtar, M.M. & Ibrahim, S.S. (2022) Temporal evaluation of insecticide resistance in populations of the major arboviral vector Aedes aegypti from Northern Nigeria. Insects, 13(2), 187.
NCVBDC. (2023) Dengue situation in India. Available from: https://ncvbdc.mohfw.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715 [Accessed 21st July 2023].
NCVBDC (National Center for Vector Borne Diseases Control). (2022) Insecticide formulations and dosages. Available from: https://ncvbdc.mohfw.gov.in/Doc/tech‐specification/Insecticides‐Formulations_Dosage(IRS%20and%20Larvicide).pdf. [Accessed 24th March 2023].
Ngoagouni, C., Kamgang, B., Brengues, C., Yahouedo, G., Paupy, C., Nakouné, E. et al. (2016) Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus resistant to DDT and deltamethrin in the Central African Republic. Parasites & Vectors, 9(1), 1–13.
Peng, H., Wang, H., Guo, X., Lv, W., Liu, L., Wang, H. et al. (2023) In vitro and in vivo validation of CYP6A14 and CYP6N6 participation in Deltamethrin metabolic resistance in Aedes albopictus. American Journal of Tropical Medicine, 108(3), 609–618.
PPQS (Directorate of Plant Protection, Quarantine & Storage). (2023) Major uses of pesticides (insecticides) as on 01.06.2023. Available from: https://ppqs.gov.in/sites/default/files/1._major_use_of_pesticides_insecticides_as_on_01.06.2023.pdf [Accessed 14th June 2023].
Putra, R.E., Ahmad, I., Prasetyo, D.B., Susanti, S., Rahayu, R. & Hariani, N. (2016) Detection of insecticide resistance in the larvae of some Aedes aegypti (Diptera: Culicidae) strains from Java, Indonesia to temephos, malathion and permethrin. International Journal of Mosquito Research, 3, 23–28.
QGIS. Geographic information system (version 3.30). (2022) QGIS Association. Available from: http://www.qgis.org.
Rath, A., Mohanty, I. & Hazra, R.K. (2018) Insecticide susceptibility status of invasive Aedes albopictus across dengue endemic districts of Odisha, India. Pest Management Science, 74(6), 1431–1440.
Rueda, L.M. (2004) Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission. Auckland: Magnolia Press, pp. 33–41.
Sharma, P.K. & Tilak, R. (2021) Outbreak prone communicable diseases of public health importance in the northern districts of West Bengal – Current status & the way forward. Indian Journal of Medical Research, 153(3), 358–366.
Shimono, T., Kanda, S., Lamaningao, P., Murakami, Y., Darcy, A.W., Mishima, N. et al. (2021) Phenotypic and haplotypic profiles of insecticide resistance in populations of Aedes aegypti larvae (Diptera: Culicidae) from central Lao PDR. Tropical Medicine and Health, 49(1), 1–13.
Smith, L.B., Kasai, S. & Scott, J.G. (2016) Pyrethroid resistance in Aedes aegypti and Aedes albopictus: important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology, 133, 1–12.
Stevenson, B.J., Pignatelli, P., Nikou, D. & Paine, M.J. (2012) Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance. PLoS Neglected Tropical Diseases, 6(3), e1595.
Urio, N.H., Pinda, P.G., Ngonzi, A.J., Muyaga, L.L., Msugupakulya, B.J., Finda, M. et al. (2022) Effects of agricultural pesticides on the susceptibility and fitness of malaria vectors in rural south‐eastern Tanzania. Parasites & Vectors, 15(1), 1–14.
Vontas, J., Katsavou, E. & Mavridis, K. (2020) Cytochrome P450‐based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: muddying the waters. Pesticide Biochemistry and Physiology, 170, 104666.
WB Health (Department of Health and Family Welfare, West Bengal). (2023) TOT for dengue case management. Available from: https://www.wbhealth.gov.in/uploaded_files/IDSP/Dengue_Presentation_Medicine_2023_(final).pdf [Accessed 17th July 2023].
WHO. (1998) Techniques to detect insecticide resistance mechanisms (field and laboratory manual). Available from: https://iris.who.int/bitstream/handle/10665/83780/WHO_CDS_CPC_MAL_98.6.pdf?sequence=1 [Accessed 7th July 2022].
WHO. (2016) Monitoring and managing insecticide resistance in Aedes mosquito populations. Available from: https://iris.who.int/bitstream/handle/10665/204588/WHO_ZIKV_VC_16.1_eng.pdf?sequence=2 [Accessed 20th July 2020].
WHO. (2022a) Manual for monitoring insecticide resistance in mosquito vectors and selecting appropriate interventions. Available from: https://iris.who.int/bitstream/handle/10665/356964/9789240051089‐eng.pdf?sequence=1 [Accessed 10th July 2022].
WHO. (2022b) Standard operating procedure for testing insecticide susceptibility of adult mosquitoes in WHO bottle bioassays. Available from: https://iris.who.int/bitstream/handle/10665/352312/9789240043770‐eng.pdf?sequence=1 [Accessed 10th July 2022].
Xu, J., Su, X., Bonizzoni, M., Zhong, D., Li, Y., Zhou, G. et al. (2018) Comparative transcriptome analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid resistance in Aedes albopictus. PLoS Neglected Tropical Diseases, 12(11), e0006828.
Yougang, A.P., Keumeni, C.R., Wilson‐Bahun, T.A., Tedjou, A.N., Nijokou, F., Wondji, C. et al. (2022) Spatial distribution and insecticide resistance profile of Aedes aefgypti and Aedes albopictus in Douala, the most important city of Cameroon. PLoS One, 17(12), e0278779.
معلومات مُعتمدة: University Grants Commission (UGC)
فهرسة مساهمة: Keywords: Aedes albopictus; cytochrome P450 monooxygenase; deltamethrin; insecticide resistance; synthetic pyrethroids
المشرفين على المادة: 9035-51-2 (Cytochrome P-450 Enzyme System)
2JTS8R821G (decamethrin)
0 (Insect Proteins)
0 (Insecticides)
0 (Nitriles)
0 (Pyrethrins)
SCR Organism: Aedes albopictus
تواريخ الأحداث: Date Created: 20240313 Date Completed: 20240806 Latest Revision: 20240807
رمز التحديث: 20240807
DOI: 10.1111/mve.12713
PMID: 38478926
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2915
DOI:10.1111/mve.12713