دورية أكاديمية

Comparative genomics provides insights into molecular adaptation to hypermetamorphosis and cantharidin metabolism in blister beetles (Coleoptera: Meloidae).

التفاصيل البيبلوغرافية
العنوان: Comparative genomics provides insights into molecular adaptation to hypermetamorphosis and cantharidin metabolism in blister beetles (Coleoptera: Meloidae).
المؤلفون: Riccieri A; Department of Sciences, University of Roma Tre, Roma, Italy., Spagoni L; Department of Sciences, University of Roma Tre, Roma, Italy., Li M; Department of Biology, University of Konstanz, Konstanz, Germany., Franchini P; Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy., Rossi MN; Department of Sciences, University of Roma Tre, Roma, Italy., Fratini E; Division of Health Protection Technologies, Italian National Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Roma, Italy., Cervelli M; Department of Sciences, University of Roma Tre, Roma, Italy.; Neurodevelopment, Neurogenetics and Molecular Neurobiology Unit, IRCCS Fondazione Santa Lucia, Roma, Italy., Bologna MA; Department of Sciences, University of Roma Tre, Roma, Italy.; National Biodiversity Future Center (NBFC), Università di Palermo, Palermo, Italy., Mancini E; Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University, Roma, Italy.
المصدر: Integrative zoology [Integr Zool] 2024 Sep; Vol. 19 (5), pp. 975-988. Date of Electronic Publication: 2024 Mar 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Publishing Asia Pty Ltd Country of Publication: Australia NLM ID: 101492420 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1749-4877 (Electronic) Linking ISSN: 17494869 NLM ISO Abbreviation: Integr Zool Subsets: MEDLINE
أسماء مطبوعة: Publication: 2012-: Richmond, Vic., Australia : Wiley Publishing Asia Pty Ltd
Original Publication: 2006-2012: [Oxford, England] : Blackwell Publishing
مواضيع طبية MeSH: Coleoptera*/genetics , Coleoptera*/metabolism , Cantharidin*/metabolism, Animals ; Genome, Insect ; Genomics ; Adaptation, Physiological/genetics ; Phylogeny
مستخلص: Blister beetles (Coleoptera: Meloidae) are currently subdivided into three subfamilies: Eleticinae (a basal group), Nemognathinae, and Meloinae. These are all characterized by the endogenous production of the defensive terpene cantharidin (CA), whereas the two most derived subfamilies show a hypermetamorphic larval development. Here, we provide novel draft genome assemblies of five species sampled across the three blister beetle subfamilies (Iselma pallidipennis, Stenodera caucasica, Zonitis immaculata, Lydus trimaculatus, and Mylabris variabilis) and performed a comparative analysis with other available Meloidae genomes and the closely-related canthariphilous species (Pyrochroa serraticornis) to disclose adaptations at a molecular level. Our results highlighted the expansion and selection of genes potentially responsible for CA production and metabolism, as well as its mobilization and vesicular compartmentalization. Furthermore, we observed adaptive selection patterns and gain of genes devoted to epigenetic regulation, development, and morphogenesis, possibly related to hypermetamorphosis. We hypothesize that most genetic adaptations occurred to support both CA biosynthesis and hypermetamorphosis, two crucial aspects of Meloidae biology that likely contributed to their evolutionary success.
(© 2024 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.)
References: Ahn SJ, Vogel H, Heckel DG (2012). Comparative analysis of the UDP‐glycosyltransferase multigene family in insects. Insect Biochemistry and Molecular Biology 42, 133–147.
Arrese EL, Soulages JL (2010). Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55, 207–225.
Barski OA, Tipparaju SM, Bhatnagar A (2008). The aldo‐keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metabolism Reviews 40, 553–624.
Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 30, 2114–2120.
Bologna MA, Di Giulio A (2011). Biological and morphological adaptations in the pre‐imaginal phases of the beetle family Meloidae. Atti Accademia Nazionale Italiana di Entomologia 59, 141–152.
Bologna MA, Di Giulio A, Pinto JD (2002). Review of the genus Stenodera with a description of its first instar larva (Coleoptera: Meloidae). European Journal of Entomology 99, 299–313.
Bologna MA, Fattorini S, Pinto JD (2001). Review of the primitive blister beetle genus Iselma with description of the first instar larva (Coleoptera: Tenebrionoidea: Meloidae). African Entomology 9, 105–129.
Bologna MA, Turco F, Pinto JD (2010). 11.19 Meloidae Gyllenhal, 1810. In: Leschen, RAB, Beutel RG, Lawrence JF, Kristensen NP, Beutel RG, eds. Handbook of Zoology, Arthropoda: Insecta, vol. 2: Coleoptera, Beetles: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). The Gruyter, Berlin/New York, pp. 681–693.
Buchfink B, Reuter K, Drost HG (2021). Sensitive protein alignments at tree‐of‐life scale using DIAMOND. Nature Methods 18, 366–368.
Cai C, Tihelka E, Giacomelli M et al. (2022). Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science 9, 211771.
Carrel JE, Eisner T (1974). Cantharidin: Potent feeding deterrent to insects. Science 183, 755–757.
Chen H, Zhu YC, Whitworth RJ, Reese JC et al. (2013). Serine and cysteine protease‐like genes in the genome of a gall midge and their interactions with host plant genotypes. Insect Biochemistry and Molecular Biology 43, 701–711.
Cruse C, Moural TW, Zhu F (2023). Dynamic roles of insect carboxyl/cholinesterases in chemical adaptation. Insects 14, 194.
Eisner T, Smedley SR, Young DK et al. (1996). Chemical basis of courtship in a beetle (Neopyrochroa flabellata): Cantharidin as precopulatory “enticing” agent. PNAS 93, 6494–6498.
Emms DM, Kelly S (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology 20, 238.
Fratini E, Rossi MN, Spagoni L et al. (2022). Molecular characterization of Kunitz‐type protease inhibitors from blister beetles (Coleoptera, Meloidae). Biomolecules 12, 988.
Fratini E, Salvemini M, Lombardo F et al. (2021). Unraveling the role of male reproductive tract and haemolymph in cantharidin‐exuding Lydus trimaculatus and Mylabris variabilis (Coleoptera: Meloidae): A comparative transcriptomics approach. BMC Genomics 22, 808.
García‐Fernández R, Peigneur S, Pons T et al. (2016). The Kunitz‐type protein ShPI‐1 inhibits serine proteases and voltage‐gated potassium channels. Toxins 8, 110.
Haas BJ, Delcher AL, Mount SM et al. (2003). Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Research 31, 5654–5666.
Haas BJ, Salzberg SL, Zhu W et al. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biology 9, R7.
Harrison MC, Hammond RL, Mallon EB (2015). Reproductive workers show queenlike gene expression in an intermediately eusocial insect, the buff‐tailed bumble bee Bombus terrestris. Molecular Ecology 24, 3043–3063.
Jiang M, Lü SM, Qi ZY et al. (2019). Characterized cantharidin distribution and related gene expression patterns in tissues of blister beetles, Epicauta chinensis. Insect Science 26, 240–250.
Kajitani R, Toshimoto K, Noguchi H et al. (2014). Efficient de novo assembly of highly heterozygous genomes from whole‐genome shotgun short reads. Genome Research 24, 1384–1395.
Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
Kolberg L, Raudvere U, Kuzmin I, Adler P, Vilo J, Peterson H (2023). g:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping. Nucleic Acids Research 51, W207–W212.
Kozlov AM, Darriba D, Flouri T et al. (2019). RAxML‐NG: A fast, scalable and user‐friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455.
Li Q, Wang D, Lv S et al. (2014). Comparative proteomics and expression analysis of five genes in Epicauta chinensis larvae from the first to fifth instar. PLoS ONE 9, e89607.
Liu SP, Pan Z, Ren GD (2016). Identification of three morphologically indistinguishable Epicauta species (Coleoptera, Meloidae, Epicautini) through DNA barcodes and morphological comparisons. Zootaxa 4103, 361–373.
Marçais G, Kingsford C (2011). A fast, lock‐free approach for efficient parallel counting of occurrences of k‐mers. Bioinformatics 27, 764–770.
Mendes FK, Vanderpool D, Fulton B, Hahn MW (2020). CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36, 5516–5518.
Molfini M, Muzzi M, Mancini E et al. (2023). The cranial apparatus glands of the canthariphilous Pyrochroa coccinea (Coleoptera: Pyrochroidae: Pyrochroinae), and their implications in sexual behaviour. Arthropod Structure & Development 77, 101316.
Muzzi M, Mancini E, Fratini E et al. (2022). Male accessory glands of blister beetles and cantharidin release: A comparative ultrastructural analysis. Insects 13, 132.
Pan Z, Bologna MA (2014). Taxonomy, bionomics and faunistics of the nominate subgenus of Mylabris Fabricius, 1775, with the description of five new species (Coleoptera: Meloidae: Mylabrini). Zootaxa 3806, 1–78.
Pinto JD, Bologna MA, Bouseman JK (1996). First‐instar larvae, courtship and oviposition in Eletica: Amending the definition of the Meloidae (Coleoptera: Tenebrionoidea). Systematic Entomology 21, 63–74.
Ranallo‐Benavidez TR, Jaron KS, Schatz MC (2020). GenomeScope 2.0 and Smudgeplot for reference‐free profiling of polyploid genomes. Nature Communications 11, 1432.
Riccieri A, Capogna E, Pinto JD, Bologna MA (2023). Molecular phylogeny, systematics and biogeography of the subfamily Nemognathinae (Coleoptera, Meloidae). Invertebrate Systematics 37, 101–116.
Riccieri A, Mancini E, Pitzalis M, Salvi D, Bologna MA (2022). Multigene phylogeny of blister beetles (Coleoptera, Meloidae) reveals extensive polyphyly of the tribe Lyttini and allows redefining its boundaries. Systematic Entomology 47, 569–580.
Riccieri A, Mancini E, Salvi D et al. (2020). Phylogeny, biogeography and systematics of the hyper‐diverse blister beetle genus Hycleus (Coleoptera: Meloidae). Molecular Phylogenetics and Evolution 144, 106706.
Scott JG, Liu N, Wen Z (1998). Insect cytochromes P450: Diversity, insecticide resistance and tolerance to plant toxins. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 121, 147–155.
Scott JG, Wen Z (2001). Cytochromes P450 of insects: The tip of the iceberg. Pest Management Science 57, 958–967.
Simonsen M, Mailund T, Pedersen CN (2011). Inference of large phylogenies using neighbour‐joining. In: Fred A, Felipe J, Gamboa H, eds. Biomedical Engineering Systems and Technologies. BIOSTEC 2010; 20–23 Jan 2010, Valencia, Spain. Communications in Computer and Information Science, vol. 127. Springer, Berlin Heidelberg, pp. 334–344.
Song Y, Gu F, Liu Z et al. (2022). The key role of fatty acid synthase in lipid metabolism and metamorphic development in a destructive insect pest, Spodoptera litura (Lepidoptera: Noctuidae). International Journal of Molecular Sciences 23, 9064.
Spellmon N, Holcomb J, Trescott L et al. (2015). Structure and function of SET and MYND domain‐containing proteins. International Journal of Molecular Sciences 16, 1406–1428.
Suyama M, Torrents D, Bork P (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments Nucleic Acids Research 34, 609–612.
Tian X, Su X, Li C et al. (2021). Draft genome of the blister beetle, Epicauta chinensis. International Journal of Biological Macromolecules 193, 1694–1706.
UniProt Consortium (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research 8, 506–515.
Wood DE, Lu J, Langmead B (2019). Improved metagenomic analysis with Kraken 2. Genome Biology 20, 257.
Wu YM, Li J, Chen XS (2018). Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus. Gigascience 7, giy006.
Wu YM, Li JR, Li J et al. (2023). Investigation of sex expression profiles and the cantharidin biosynthesis genes in two blister beetles. PLoS ONE 18, e0290245.
Wu YM, Liu YY, Chen XS (2020). Genomic content of chemosensory receptors in two sister blister beetles facilitates characterization of chemosensory evolution. BMC Genomics 21, 589.
Yang Z (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24, 1586–1591.
Yokoi T, Nabe T, Ishizuka C et al. (2020). Transcription‐inducing activity of natural and synthetic juvenile hormone agonists through the Drosophila Methoprene‐tolerant protein. Pest Management Science 76, 2316–2323.
Zhou C, Zheng X, Wang L et al. (2023). The first chromosome‐level genome assembly and transcriptome sequencing provide insights into cantharidin production of the blister beetles. Integrative Zoology, https://doi.org/10.1111/1749‐4877.12783.
معلومات مُعتمدة: A0375-2020-36555 "NOCLOT-NuOvi farmaCi anticoaguLanti dalla biOdiversiTà dei meloidi"; CUP F85F21003680009 "NOCLOT-NuOvi farmaCi anticoaguLanti dalla biOdiversiTà dei meloidi"; 2018-2022 Department of Science of Roma Tre University; 2023-2027 Department of Science of Roma Tre University; 999900_PON_RTD_A7-G-15023_SCIENZE PON-Ricerca e Innovazione; NBFC to the University of Roma Tre-Department of Science and Sapienza University-Department of Biology and Biotechnologies; the Italian Ministry of University and Research; CN00000033 "Dalla ricerca all'impresa", Investimento 1.4; M-4C-2Inv. 1.5 CUP F832B22000040006 to MAB Rome Technopole
فهرسة مساهمة: Keywords: genome evolution; juvenile hormone; larval development; terpene production
المشرفين على المادة: IGL471WQ8P (Cantharidin)
تواريخ الأحداث: Date Created: 20240315 Date Completed: 20240827 Latest Revision: 20240827
رمز التحديث: 20240827
DOI: 10.1111/1749-4877.12819
PMID: 38488179
قاعدة البيانات: MEDLINE
الوصف
تدمد:1749-4877
DOI:10.1111/1749-4877.12819