دورية أكاديمية

A computational model of motion sickness dynamics during passive self-motion in the dark.

التفاصيل البيبلوغرافية
العنوان: A computational model of motion sickness dynamics during passive self-motion in the dark.
المؤلفون: Allred AR; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA. aaron.allred@colorado.edu., Clark TK; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA.
المصدر: Experimental brain research [Exp Brain Res] 2024 May; Vol. 242 (5), pp. 1127-1148. Date of Electronic Publication: 2024 Mar 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Verlag
مواضيع طبية MeSH: Motion Sickness*/physiopathology , Motion Perception*/physiology, Humans ; Male ; Adult ; Female ; Young Adult ; Computer Simulation ; Darkness
مستخلص: Predicting the time course of motion sickness symptoms enables the evaluation of provocative stimuli and the development of countermeasures for reducing symptom severity. In pursuit of this goal, we present an Observer-driven model of motion sickness for passive motions in the dark. Constructed in two stages, this model predicts motion sickness symptoms by bridging sensory conflict (i.e., differences between actual and expected sensory signals) arising from the Observer model of spatial orientation perception (stage 1) to Oman's model of motion sickness symptom dynamics (stage 2; presented in 1982 and 1990) through a proposed "Normalized Innovation Squared" statistic. The model outputs the expected temporal development of human motion sickness symptom magnitudes (mapped to the Misery Scale) at a population level, due to arbitrary, 6-degree-of-freedom, self-motion stimuli. We trained model parameters using individual subject responses collected during fore-aft translations and off-vertical axis of rotation motions. Improving on prior efforts, we only used datasets with experimental conditions congruent with the perceptual stage (i.e., adequately provided passive motions without visual cues) to inform the model. We assessed model performance by predicting an unseen validation dataset, producing a Q 2 value of 0.91. Demonstrating this model's broad applicability, we formulate predictions for a host of stimuli, including translations, earth-vertical rotations, and altered gravity, and we provide our implementation for other users. Finally, to guide future research efforts, we suggest how to rigorously advance this model (e.g., incorporating visual cues, active motion, responses to motion of different frequency, etc.).
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Bijveld MMC, Bronstein AM, Golding JF, Gresty MA (2008) Nauseogenicity of off-vertical axis rotation vs. equivalent visual motion. Aviat Space Environ Med 79(7):661–665. https://doi.org/10.3357/ASEM.2241.2008. (PMID: 10.3357/ASEM.2241.200818619124)
Bos JE (2011) Nuancing the relationship between motion sickness and postural stability. Displays 32(4):189–193. https://doi.org/10.1016/j.displa.2010.09.005. (PMID: 10.1016/j.displa.2010.09.005)
Bos JE, Bles W (1998) Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res Bull 47(5):537–542. https://doi.org/10.1016/S0361-9230(98)00088-4. (PMID: 10.1016/S0361-9230(98)00088-410052585)
Bos JE, MacKinnon SN, Patterson A (2005) Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat Space Environ Med 76(12):8.
Bos JE, Diels C, Souman JL (2022) Beyond seasickness: a motivated call for a new motion sickness standard across motion environments. Vibration 5(4):755–769. https://doi.org/10.3390/vibration5040044. (PMID: 10.3390/vibration5040044)
Brooks JX, Cullen KE (2009) Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. J Neurosci 29(34):10499–10511. https://doi.org/10.1523/JNEUROSCI.1937-09.2009. (PMID: 10.1523/JNEUROSCI.1937-09.2009197103033311469)
Cian C, Ohlmann T, Ceyte H, Gresty MA, Golding JF (2011) Off vertical axis rotation motion sickness and field dependence. Aviat Space Environ Med 82(10):959–963. https://doi.org/10.3357/ASEM.3049.2011. (PMID: 10.3357/ASEM.3049.201121961400)
Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR (2015a) Human perceptual overestimation of whole body roll tilt in hypergravity. J Neurophysiol 113(7):2062–2077. https://doi.org/10.1152/jn.00095.2014. (PMID: 10.1152/jn.00095.201425540216)
Clark TK, Newman MC, Oman CM, Merfeld DM, Young LR (2015b) Modeling human perception of orientation in altered gravity. Front Syst Neurosci 9:68. https://doi.org/10.3389/fnsys.2015.00068. (PMID: 10.3389/fnsys.2015.00068259998224419856)
Clark TK, Newman MC, Karmali F, Oman CM, Merfeld DM (2019) Mathematical models for dynamic, multisensory spatial orientation perception. In: Progress in brain research, vol 248, pp 65–90. https://doi.org/10.1016/bs.pbr.2019.04.014.
Dai M, Kunin M, Raphan T, Cohen B (2003) The relation of motion sickness to the spatial temporal properties of velocity storage. Exp Brain Res 151(2):173–189. https://doi.org/10.1007/s00221-003-1479-4. (PMID: 10.1007/s00221-003-1479-412783152)
Dai M, Sofroniou S, Kunin M, Raphan T, Cohen B (2010) Motion sickness induced by off-vertical axis rotation (OVAR). Exp Brain Res 204(2):207–222. https://doi.org/10.1007/s00221-010-2305-4. (PMID: 10.1007/s00221-010-2305-4205354563181161)
Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF (1988) Space motion sickness during 24 flights of the Space Shuttle. Aviat Space Environ Med 59(12):1185–1189. (PMID: 3240221)
Davis S, Nesbitt K, Nalivaiko E (2014) A systematic review of cybersickness. In: Proceedings of the 2014 conference on interactive entertainment, pp 1–9. https://doi.org/10.1145/2677758.2677780.
de Winkel KN, Irmak T, Kotian V, Pool DM, Happee R (2022) Relating individual motion sickness levels to subjective discomfort ratings. Exp Brain Res 240(4):1231–1240. https://doi.org/10.1007/s00221-022-06334-6. (PMID: 10.1007/s00221-022-06334-6351920438861616)
Denise P, Etard O, Zupan L, Darlot C (1996) Motion sickness during off-vertical axis rotation: prediction by a model of sensory interactions and correlation with other forms of motion sickness. Neurosci Lett 203(3):183–186. https://doi.org/10.1016/0304-3940(96)12303-X. (PMID: 10.1016/0304-3940(96)12303-X8742023)
Donohew BE, Griffin MJ (2004) Motion sickness: effect of the frequency of lateral oscillation. Aviat Space Environ Med 75(8):8.
Donohew BE, Griffin MJ (2009) Motion sickness with fully roll-compensated lateral oscillation: effect of oscillation frequency. Aviat Space Environ Med 80(2):94–101. https://doi.org/10.3357/ASEM.2345.2009. (PMID: 10.3357/ASEM.2345.200919198194)
Golding JF (2016) Motion sickness. In: Handbook of clinical neurology, vol 137. Elsevier, pp 371–390. https://doi.org/10.1016/B978-0-444-63437-5.00027-3.
Golding JF, Phil D, Markey HM, Stott RR (1995) The effects of motion direction, body axis, and posture on motion sickness induced by low frequency linear oscillation. Aviat Space Environ Med 66(11):1046–1051. (PMID: 8588793)
Golding JF, Mueller A, Gresty M (2001) A motion sickness maximum around the 0.2 Hz frequency range of horizontal translational oscillation. Aviat Space Environ Med 72(3):188–192. (PMID: 11277284)
Griffin MJ, Mills KL (2002a) Effect of frequency and direction of horizontal oscillation on motion sickness. Aviat Space Environ Med 73(6):537–543. (PMID: 12056668)
Griffin MJ, Mills KL (2002b) Effect of magnitude and direction of horizontal oscillation on motion sickness. Aviat Space Environ Med 73(7):640–646. (PMID: 12137099)
Groen EL, Clark TK, Houben MMJ, Bos JE, Mumaw RJ (2022) Objective evaluation of the somatogravic illusion from flight data of an airplane accident. Safety 8(4):Article 4. https://doi.org/10.3390/safety8040085. (PMID: 10.3390/safety8040085)
Guedry FE, Benson AJ, Moore HJ (1982) Influence of a visual display and frequency of whole-body angular oscillation on incidence of motion sickness. Aviat Space Environ Med 53(6):564–569. (PMID: 7115240)
Heer M, Paloski WH (2006) Space motion sickness: Incidence, etiology, and countermeasures. Auton Neurosci 129(1–2):77–79. https://doi.org/10.1016/j.autneu.2006.07.014. (PMID: 10.1016/j.autneu.2006.07.01416935570)
Irmak T, de Winkel KN, Pool DM, Bülthoff HH, Happee R (2021) Individual motion perception parameters and motion sickness frequency sensitivity in fore-aft motion. Exp Brain Res 239(6):1727–1745. https://doi.org/10.1007/s00221-021-06093-w. (PMID: 10.1007/s00221-021-06093-w337797938006642)
Irmak T, Kotian V, Happee R, de Winkel KN, Pool DM (2022) Amplitude and temporal dynamics of motion sickness. Front Syst Neurosci 16:866503. https://doi.org/10.3389/fnsys.2022.866503. (PMID: 10.3389/fnsys.2022.866503356154279126086)
Irmak T, Pool DM, De Winkel KN, Happee R (2023) Validating models of sensory conflict and perception for motion sickness prediction. Biol Cybern. https://doi.org/10.1007/s00422-023-00959-8. (PMID: 10.1007/s00422-023-00959-83697184410258185)
Jamali M, Sadeghi SG, Cullen KE (2009) Response of vestibular nerve afferents innervating utricle and saccule during passive and active translations. J Neurophysiol 101(1):141–149. https://doi.org/10.1152/jn.91066.2008. (PMID: 10.1152/jn.91066.2008189712933815216)
Johnson WH, Mayne JW (1953) Stimulus required to produce motion sickness; restriction of head movement as a preventive of airsickness; field studies on airborne troops. J Aviat Med 24(5):400–411 (passim). (PMID: 13108839)
Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res 9(2):83–87. https://doi.org/10.3233/VES-1999-9202. (PMID: 10.3233/VES-1999-920210378179)
Kamiji N, Kurata Y, Wada T, Doi S (2007) Modeling and validation of carsickness mechanism. SICE Annu Conf 2007:1138–1143. https://doi.org/10.1109/SICE.2007.4421156. (PMID: 10.1109/SICE.2007.4421156)
Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3(3):203. https://doi.org/10.1207/s15327108ijap0303_3. (PMID: 10.1207/s15327108ijap0303_3)
Khalid H, Turan O, Bos JE (2011a) Theory of a subjective vertical–horizontal conflict physiological motion sickness model for contemporary ships. J Mar Sci Technol 16(2):214–225. https://doi.org/10.1007/s00773-010-0113-y. (PMID: 10.1007/s00773-010-0113-y)
Khalid H, Turan O, Bos JE, Incecik A (2011b) Application of the subjective vertical–horizontal-conflict physiological motion sickness model to the field trials of contemporary vessels. Ocean Eng 38(1):22–33. https://doi.org/10.1016/j.oceaneng.2010.09.008. (PMID: 10.1016/j.oceaneng.2010.09.008)
Kolasinski EM (1995) Simulator sickness in virtual environments. U.S. Army Research Institute for the Behavioral and Social Sciences.
Kravets VG, Dixon JB, Ahmed NR, Clark TK (2021) COMPASS: computations for orientation and motion perception in altered sensorimotor states. Front Neural Circuits. https://doi.org/10.3389/fncir.2021.757817. (PMID: 10.3389/fncir.2021.757817347208898553968)
Kravets VG, Ahmed N, Clark TK (2022) A Rao-Blackwellized particle filter for modeling neurovestibular adaptation to altered gravity, p 9.
Kuiper OX, Bos JE, Schmidt EA, Diels C, Wolter S (2020) Knowing what’s coming: unpredictable motion causes more motion sickness. Hum Factors 62(8):1339–1348. https://doi.org/10.1177/0018720819876139. (PMID: 10.1177/001872081987613931590575)
Lackner JR (2014) Motion sickness: more than nausea and vomiting. Exp Brain Res 232(8):2493–2510. https://doi.org/10.1007/s00221-014-4008-8. (PMID: 10.1007/s00221-014-4008-8249617384112051)
Lackner JR, DiZio P (2006) Space motion sickness. Exp Brain Res 175(3):377–399. https://doi.org/10.1007/s00221-006-0697-y. (PMID: 10.1007/s00221-006-0697-y17021896)
Lackner JR, Graybiel A (1987) Head movements in low and high gravitoinertial force environments elicit motion sickness: Implications for space motion sickness. Aviat Space Environ Med 58(9 Pt 2):A212-217. (PMID: 3675494)
Laurens J (2022) The otolith vermis: a systems neuroscience theory of the Nodulus and Uvula. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2022.886284. (PMID: 10.3389/fnsys.2022.886284361858249520001)
Lawson BD (2014). Chapter 24. Motion sickness scaling. In: Handbook of virtual environments, pp 601–626.
Leger A, Money KE, Landolt JP, Cheung BS, Rodden BE (1981) Motion sickness caused by rotations about Earth-horizontal and Earth-vertical axes. J Appl Physiol 50(3):469–477. https://doi.org/10.1152/jappl.1981.50.3.469. (PMID: 10.1152/jappl.1981.50.3.4697251437)
Luenberger D (1971) An introduction to observers. IEEE Trans Autom Control 16(6):596–602. https://doi.org/10.1109/TAC.1971.1099826. (PMID: 10.1109/TAC.1971.1099826)
Lundberg S, Lee S-I (2017) A unified approach to interpreting model predictions. arXiv:1705.07874 [cs, stat].
Mayne R (1974) A systems concept of the vestibular organs. In: Kornhuber HH (ed) Vestibular system part 2: psychophysics, applied aspects and general interpretations, vol. 6/2, pp 493–580. Springer, Berlin. https://doi.org/10.1007/978-3-642-65920-1_14.
Merfeld DM, Young LR, Oman CM, Shelhamert MJ (1993) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestib Res 3(2):141–161. https://doi.org/10.3233/VES-1993-3204. (PMID: 10.3233/VES-1993-32048275250)
Mills KL, Griffin MJ (2000) Effect of seating, vision and direction of horizontal oscillation on motion sickness. Aviat Space Environ Med 71(10):996–1002. (PMID: 11051306)
Murdin L, Chamberlain F, Cheema S, Arshad Q, Gresty MA, Golding JF, Bronstein A (2015) Motion sickness in migraine and vestibular disorders: figure 1. J Neurol Neurosurg Psychiatry 86(5):585–587. https://doi.org/10.1136/jnnp-2014-308331. (PMID: 10.1136/jnnp-2014-30833125118205)
Newman MC (2009) A multisensory observer model for human spatial orientation perception. Massachusetts Institute of Technology.
O’Hanlon J, McCauley M (1974) Motion sickness incidence as a function of vertical sinusoidal motion.pdf. Aerosp Med Hum Perform 45:366–369.
Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. https://go.exlibris.link/rJjgfgfW.
Oman CM (1987) Spacelab experiments on space motion sickness. Acta Astronaut 15(1):55–66. https://doi.org/10.1016/0094-5765(87)90066-X. (PMID: 10.1016/0094-5765(87)90066-X11538841)
Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68(2):294–303. https://doi.org/10.1139/y90-044. (PMID: 10.1139/y90-0442178753)
Oman CM, Cullen KE (2014) Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology. Exp Brain Res 232(8):2483–2492. https://doi.org/10.1007/s00221-014-3973-2. (PMID: 10.1007/s00221-014-3973-2248385524130651)
Ortega HJ, Harm DL, Reschke MF (2019) Space and entry motion sickness. In: Barratt MR, Baker ES, Pool SL (eds) Principles of clinical medicine for space flight. Springer, New York, pp 441–456. https://doi.org/10.1007/978-1-4939-9889-0_14.
Reason JT, Brand JJ (1975) Motion sickness. Academic Press, pp vii, 310.
Reuten AJC, Nooij SAE, Bos JE, Smeets JBJ (2021) How feelings of unpleasantness develop during the progression of motion sickness symptoms. Exp Brain Res 239(12):3615–3624. https://doi.org/10.1007/s00221-021-06226-1. (PMID: 10.1007/s00221-021-06226-1345955728599357)
Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3(3):195–240. https://doi.org/10.1207/s15326969eco0303_2. (PMID: 10.1207/s15326969eco0303_2)
Roy JE, Cullen KE (2004) Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J Neurosci 24(9):2102–2111. https://doi.org/10.1523/JNEUROSCI.3988-03.2004. (PMID: 10.1523/JNEUROSCI.3988-03.2004149990616730417)
Stanney K, Fidopiastis C, Foster L (2020) Virtual reality is sexist: but it does not have to be. Front Robot AI 7:4. https://doi.org/10.3389/frobt.2020.00004. (PMID: 10.3389/frobt.2020.00004335011737805626)
Turan O, Verveniotis C, Khalid H (2009) Motion sickness onboard ships: subjective vertical theory and its application to full-scale trials. J Mar Sci Technol 14(4):409–416. https://doi.org/10.1007/s00773-009-0064-3. (PMID: 10.1007/s00773-009-0064-3)
Wada T, Fujisawa S, Doi S (2018) Analysis of driver’s head tilt using a mathematical model of motion sickness. Int J Ind Ergon 63:89–97. https://doi.org/10.1016/j.ergon.2016.11.003. (PMID: 10.1016/j.ergon.2016.11.003)
Wada T, Kawano J, Okafuji Y, Takamatsu A, Makita M (2020a) A computational model of motion sickness considering visual and vestibular information. In: 2020 IEEE international conference on systems, man, and cybernetics (SMC), pp 1758–1763. https://doi.org/10.1109/SMC42975.2020.9283350.
Wada T, Kawano J, Okafuji Y, Takamatsu A, Makita M (2020b) A computational model of motion sickness considering visual and vestibular information. In: 2020 IEEE international conference on systems, man, and cybernetics (SMC), pp 1758–1763. https://doi.org/10.1109/SMC42975.2020.9283350.
Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269(5232):1880–1882. https://doi.org/10.1126/science.7569931. (PMID: 10.1126/science.75699317569931)
Yunus I, Farhan Witjaksono F, Naz Başokur E, Jerrelind J, Drugge L (2022) Analysis of human perception models for motion sickness in autonomous driving. In: 13th international conference on applied human factors and ergonomics (AHFE 2022). https://doi.org/10.54941/ahfe1002473.
Yunus I, Jerrelind J, Drugge L (2022) Evaluation of motion sickness prediction models for autonomous driving. In: Orlova A, Cole D (eds) Advances in dynamics of vehicles on roads and tracks II. Springer International Publishing, pp 875–887. https://doi.org/10.1007/978-3-031-07305-2_81.
Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86(3):209–230. https://doi.org/10.1007/s00422-001-0290-1. (PMID: 10.1007/s00422-001-0290-112068787)
معلومات مُعتمدة: 80NSSC20K1202 Space Technology Mission Directorate
فهرسة مساهمة: Keywords: Orientation perception; Predictive modeling; Sensory conflict; Spatial disorientation; Vestibular
تواريخ الأحداث: Date Created: 20240315 Date Completed: 20240509 Latest Revision: 20240712
رمز التحديث: 20240712
DOI: 10.1007/s00221-024-06804-z
PMID: 38489025
قاعدة البيانات: MEDLINE