دورية أكاديمية

Disrupting direct inputs from the dorsal subiculum to the granular retrosplenial cortex impairs flexible spatial memory in the rat.

التفاصيل البيبلوغرافية
العنوان: Disrupting direct inputs from the dorsal subiculum to the granular retrosplenial cortex impairs flexible spatial memory in the rat.
المؤلفون: Yanakieva S; School of Psychology, Cardiff University, Wales, UK., Frost BE; School of Psychology, Cardiff University, Wales, UK., Amin E; School of Psychology, Cardiff University, Wales, UK., Nelson AJD; School of Psychology, Cardiff University, Wales, UK., Aggleton JP; School of Psychology, Cardiff University, Wales, UK.
المصدر: The European journal of neuroscience [Eur J Neurosci] 2024 May; Vol. 59 (10), pp. 2715-2731. Date of Electronic Publication: 2024 Mar 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
مواضيع طبية MeSH: Spatial Memory*/drug effects , Spatial Memory*/physiology , Hippocampus*/drug effects , Hippocampus*/physiology , Rats, Long-Evans*, Animals ; Male ; Rats ; Cues ; Clozapine/pharmacology ; Clozapine/analogs & derivatives ; Maze Learning/drug effects ; Maze Learning/physiology ; Neural Pathways/physiology ; Neural Pathways/drug effects ; Memory, Short-Term/drug effects ; Memory, Short-Term/physiology ; Cerebral Cortex/drug effects ; Cerebral Cortex/physiology
مستخلص: In a changing environment, animals must process spatial signals in a flexible manner. The rat hippocampal formation projects directly upon the retrosplenial cortex, with most inputs arising from the dorsal subiculum and terminating in the granular retrosplenial cortex (area 29). The present study examined whether these same projections are required for spatial working memory and what happens when available spatial cues are altered. Consequently, injections of iDREADDs were made into the dorsal subiculum of rats. In a separate control group, GFP-expressing adeno-associated virus was injected into the dorsal subiculum. Both groups received intracerebral infusions within the retrosplenial cortex of clozapine, which in the iDREADDs rats should selectively disrupt the subiculum to retrosplenial projections. When tested on reinforced T-maze alternation, disruption of the subiculum to retrosplenial projections had no evident effect on the performance of those alternation trials when all spatial-cue types remained present and unchanged. However, the same iDREADDs manipulation impaired performance on all three alternation conditions when there was a conflict or selective removal of spatial cues. These findings reveal how the direct projections from the dorsal subiculum to the retrosplenial cortex support the flexible integration of different spatial cue types, helping the animal to adopt the spatial strategy that best meets current environmental demands.
(© 2024 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
References: Aggleton, J. P., & Christiansen, K. (2015). The subiculum: The heart of the extended hippocampal system. In Progress in brain research (1st ed., Vol. 219, pp. 65–82). Elsevier. https://doi.org/10.1016/bs.pbr.2015.03.003.
Aggleton, J. P., Neave, N., Nagle, S., & Sahgal, A. (1995). A comparison of the effects of medial prefrontal, cingulate cortex, and cingulum bundle lesions on tests of spatial memory: Evidence of a double dissociation between frontal and cingulum bundle contributions. Journal of Neuroscience, 15(11), 7270–7281. https://doi.org/10.1523/jneurosci.15-11-07270.1995.
Aggleton, J. P., & O'Mara, S. M. (2022). The anterior thalamic nuclei: Core components of a tripartite episodic memory system. Nature Reviews Neuroscience, 23, 505–516. https://doi.org/10.1038/s41583-022-00591-8.
Anagnostaras, S. G., Gale, G. D., & Fanselow, M. S. (2001). Hippocampus and contextual fear conditioning: Recent controversies and advances. Hippocampus, 11(1), 8–17. https://doi.org/10.1002/1098-1063(2001)11:1<8::AID-HIPO1015>3.0.CO;2-7.
Bannerman, D. M., Rawlins, J. N. P., McHugh, S. B., Deacon, R. M. J., Yee, B. K., Bast, T., Zhang, W. N., Pothuizen, H. H. J., & Feldon, J. (2004). Regional dissociations within the hippocampus ‐ memory and anxiety. Neuroscience and Biobehavioral Reviews, 28(3), 273–283. https://doi.org/10.1016/j.neubiorev.2004.03.004.
Brown, M. B., & Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the American Statistical Association, 69(346), 364–367. https://doi.org/10.1080/01621459.1974.10482955.
Bubb, E. J., Aggleton, J. P., O'Mara, S. M., & Nelson, A. J. D. (2021). Chemogenetics reveal an anterior cingulate‐thalamic pathway for attending to task‐relevant information. Cerebral Cortex, 31(4), 2169–2186. https://doi.org/10.1093/cercor/bhaa353.
Bubb, E. J., Kinnavane, L., & Aggleton, J. P. (2017). Hippocampal–diencephalic–cingulate networks for memory and emotion: An anatomical guide. Brain and Neuroscience Advances, 1, 239821281772344. https://doi.org/10.1177/2398212817723443.
Burzynska, A. Z., Ganster, D. C., Fanning, J., Salerno, E. A., Gothe, N. P., Voss, M. W., McAuley, E., & Kramer, A. F. (2020). Occupational physical stress is negatively associated with hippocampal volume and memory in older adults. Frontiers in Human Neuroscience, 14(July), 266. https://doi.org/10.3389/fnhum.2020.00266.
Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114(2), 340–375. https://doi.org/10.1037/0033-295X.114.2.340.
Cooper, B. G., & Mizumori, S. J. Y. (2001). Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. Journal of Neuroscience, 21(11), 3986–4001. https://doi.org/10.1523/jneurosci.21-11-03986.2001.
Czajkowski, R., Jayaprakash, B., Wiltgen, B., Rogerson, T., Guzman‐Karlsson, M. C., Barth, A. L., Trachtenberg, J. T., & Silva, A. J. (2014). Encoding and storage of spatial information in the retrosplenial cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8661–8666. https://doi.org/10.1073/pnas.1313222111.
Czajkowski, R., Zglinicki, B., Rejmak, E., & Konopka, W. (2020). Strategy‐specific patterns of arc expression in the retrosplenial cortex and hippocampus during t‐maze learning in rats. Brain Sciences, 10(11), 1–9. https://doi.org/10.3390/brainsci10110854.
De Sousa, A. F., Cowansage, K. K., Zutshi, I., Cardozo, L. M., Yoo, E. J., Leutgeb, S., & Mayford, M. (2019). Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8576–8581. https://doi.org/10.1073/pnas.1818432116.
Douglas, R. J. (1966). Cues for spontaneous alternation. Journal of Comparative and Physiological Psychology, 62(2), 171–183. https://doi.org/10.1037/h0023668.
Dudchenko, P. A. (2001). How do rats actually solve the T‐maze. Behavioural neuroscience, 115(4), 850–860.
Dudchenko, P. A., & Davidson, M. (2002). Rats use a sense of direction to alternate on T‐mazes located in adjacent rooms. Animal Cognition, 5(2), 115–118. https://doi.org/10.1007/s10071-002-0134-y.
Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 117(4), 1785–1796. https://doi.org/10.1152/jn.00005.2017.
Elduayen, C., & Save, E. (2014). The retrosplenial cortex is necessary for path integration in the dark. Behavioural Brain Research, 272, 303–307. https://doi.org/10.1016/j.bbr.2014.07.009.
Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews Neuroscience, 6(2), 119–130. https://doi.org/10.1038/nrn1607.
Gao, M., Noguchi, A., & Ikegaya, Y. (2021). The subiculum sensitizes retrosplenial cortex layer 2/3 pyramidal neurons. Journal of Physiology, 94(12), 3151–3167. https://doi.org/10.1113/JP281152.
Gomez, J. L., Bonaventura, J., Lesniak, W., Mathews, W. B., Sysa‐Shah, P., Rodriguez, L. A., Ellis, R. J., Richie, C. T., Harvey, B. K., Dannals, R. F., Pomper, M. G., Bonci, A., & Michaelides, M. (2017). Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science, 357(6350), 503–507. https://doi.org/10.1126/science.aan2475.
van Groen, T., & Wyss, J. M. (1992). Connections of the retrosplenial dysgranular cortex in the rat. Journal of Comparative Neurology, 315(2), 200–216. https://doi.org/10.1002/cne.903150207.
Harker, T. K., & Whishaw, I. Q. (2004). A reaffirmation of the retrosplenial contribution to rodent navigation: Reviewing the influences of lesion, strain, and task. Neuroscience and Biobehavioral Reviews, 28(5), 485–496. https://doi.org/10.1016/j.neubiorev.2004.06.005.
Hayashi, T., Oguro, M., & Sato, N. (2020). Involvement of the retrosplenial cortex in the processing of the temporal aspect of episodic‐like memory in rats. Neuroscience Research, 154, 52–55. https://doi.org/10.1016/j.neures.2019.05.005.
Horikawa, K., Kinjo, N., Stanley, L. C., & Powell, E. W. (1988). Topographic organization and collateralization of the projections of the anterior and laterodorsal thalamic nuclei to cingulate areas 24 and 29 in the rat. Neuroscience Research, 6(1), 31–44. https://doi.org/10.1016/0168-0102(88)90004-1.
Hunt, P. R., Neave, N., Shaw, C., & Aggleton, J. P. (1994). The effects of lesions to the fornix and dorsomedial thalamus on concurrent discrimination learning by rats. Behavioural Brain Research, 62(2), 195–205. https://doi.org/10.1016/0166-4328(94)90028-0.
Johnsen, S. H. W., & Rytter, H. M. (2021). Dissociating spatial strategies in animal research: Critical methodological review with focus on egocentric navigation and the hippocampus. Neuroscience and Biobehavioral Reviews, 126(March), 57–78. https://doi.org/10.1016/j.neubiorev.2021.03.022.
Keene, C. S., & Bucci, D. J. (2008). Neurotoxic lesions of Retrosplenial cortex disrupt signaled and Unsignaled contextual fear conditioning. Behavioral Neuroscience, 122(5), 1070–1077. https://doi.org/10.1037/a0012895.
Kinnavane, L., Amin, E., Aggleton, J. P., & Nelson, A. J. D. (2019). Do the rat anterior thalamic nuclei contribute to behavioural flexibility? Behavioural Brain Research, 359(October 2018), 536–549. https://doi.org/10.1016/j.bbr.2018.10.012.
Kinnavane, L., Vann, S. D., Nelson, A. J. D., O'Mara, S. M., & Aggleton, J. P. (2018). Collateral projections innervate the mammillary bodies and retrosplenial cortex: A new category of hippocampal cells. ENeuro, 5(1), 1–14. https://doi.org/10.1523/ENEURO.0383-17.2018.
Kitanishi, T., Umaba, R., & Mizuseki, K. (2021). Robust information routing by dorsal subiculum neurons. Science Advances, 7(11), 1–22. https://doi.org/10.1126/sciadv.abf1913.
Lever, C., Burton, S., Jeewajee, A., O'Keefe, J., & Burgess, N. (2009). Boundary vector cells in the subiculum of the hippocampal formation. Journal of Neuroscience, 29(31), 9771–9777. https://doi.org/10.1523/JNEUROSCI.1319-09.2009.
Maguire, E. A. (2001). The retrosplenial contribution to human navigation: A review of lesion and neuroimaging findings. Scandinavian Journal of Psychology, 42(3), 225–238. https://doi.org/10.1111/1467-9450.00233.
Manvich, D. F., Webster, K. A., Foster, S. L., Farrell, M. S., Ritchie, J. C., Porter, J. H., & Weinshenker, D. (2018). The DREADD agonist clozapine N‐oxide (CNO) is reverse‐metabolized to clozapine and produces clozapine‐like interoceptive stimulus effects in rats and mice. Scientific Reports, 8(1), 3840. https://doi.org/10.1038/s41598-018-22116-z.
de Melo, M. B., Favaro, V. M., & Oliveira, M. G. M. (2020). The dorsal subiculum is required for contextual fear conditioning consolidation in rats. Behavioural Brain Research, 390(March), 112661. https://doi.org/10.1016/j.bbr.2020.112661.
Milczarek, M. M., Vann, S. D., & Sengpiel, F. (2018). Spatial memory engram in the mouse Retrosplenial cortex. Current Biology, 28(12), 1975–1980.e6. https://doi.org/10.1016/j.cub.2018.05.002.
Miller, A. M. P., Mau, W., & Smith, D. M. (2019). Retrosplenial cortical representations of space and future goal locations develop with learning. Current Biology, 29(12), 2083–2090.e4. https://doi.org/10.1016/j.cub.2019.05.034.
Miller, A. P., Vedder, L. C., Law, M. L., & Smith, D. M. (2014). Cues, context, and long‐term memory: The role of the retrosplenial cortex in spatial cognition. Frontiers in Human Neuroscience, 8(AUG), 1–15. https://doi.org/10.3389/fnhum.2014.00586.
Miyashita, T., & Rockland, K. S. (2007). GABAergic projections from the hippocampus to the retrosplenial cortex in the rat. European Journal of Neuroscience, 26(5), 1193–1204. https://doi.org/10.1111/j.1460-9568.2007.05745.x.
Mizumori, S. J. Y., Cooper, B. G., Leutgeb, S., & Mizumori, S. J. Y. (2000). A neural systems analysis of adaptive navigation. Molecular Neurobiology, 21(1–2), 57–82. https://doi.org/10.1385/MN:21:1-2:057.
Morris, R. G. M., Schenk, F., Tweedie, F., & Jarrard, L. E. (1990). Ibotenate lesions of hippocampus and/or subiculum: Dissociating components of Allocentric spatial learning. European Journal of Neuroscience, 2(12), 1016–1028. https://doi.org/10.1111/j.1460-9568.1990.tb00014.x.
Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience, 31, 69–89. https://doi.org/10.1146/annurev.neuro.31.061307.090723.
Moser, M. B., & Moser, E. I. (1998). Functional differentiation in the hippocampus. Hippocampus, 8(6), 608–619. https://doi.org/10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7.
Nelson, A. J., Hindley, E. L., Pearce, J. M., Vann, S. D., & Aggleton, J. P. (2015). The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning. Frontiers in Behavioral Neuroscience, 9(FEB), 11. https://doi.org/10.3389/fnbeh.2015.00011.
Nelson, A. J. D., Hindley, E. L., Vann, S. D., & Aggleton, J. P. (2018). When is the rat retrosplenial cortex required for stimulus integration? Behavioral Neuroscience, 132(5), 366–377. https://doi.org/10.1037/bne0000267.
Nelson, A. J., Kinnavane, L., Amin, E., O'Mara, S. M., & Aggleton, J. P. (2020). Deconstructing the direct reciprocal hippocampal‐anterior thalamic pathways for spatial learning. Journal of Neuroscience, 40(36), 6978–6990. https://doi.org/10.1523/JNEUROSCI.0874-20.2020.
Nestor, P. J., Fryer, T. D., Ikeda, M., & Hodges, J. R. (2003). Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer's disease). European Journal of Neuroscience, 18(9), 2663–2667. https://doi.org/10.1046/j.1460-9568.2003.02999.x.
O'Keefe, J., & Nadel, L. (1979). Hippocampus as cognitive map. Behavioural and Brain Sciences, 487–533.
O'Mara, S. (2005). The subiculum: What it does, what it might do, and what neuroanatomy has yet to tell us. Journal of Anatomy, 207(3), 271–282. https://doi.org/10.1111/j.1469-7580.2005.00446.x.
O'Mara, S. M., Sanchez‐Vives, M. V., Brotons‐Mas, J. R., & O'Hare, E. (2009). Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Progress in Neuro‐Psychopharmacology and Biological Psychiatry, 33(5), 782–790. https://doi.org/10.1016/j.pnpbp.2009.03.040.
Pan, T.‐T., Liu, C., Li, D.‐M., Zhang, T.‐H., Zhang, W., Zhao, S.‐L., Zhou, Q.‐X., Nie, B.‐B., Zhu, G.‐H., Xu, L., & Liu, H. (2022). Retrosplenial cortex effects contextual fear formation relying on Dysgranular constituent in rats. Frontiers in Neuroscience, 16(May), 886858. https://doi.org/10.3389/fnins.2022.886858.
Pothuizen, H. H. J., Aggleton, J. P., & Vann, S. D. (2008). Do rats with retrosplenial cortex lesions lack direction? European Journal of Neuroscience, 28(12), 2486–2498. https://doi.org/10.1111/j.1460-9568.2008.06550.x.
Pothuizen, H. H. J., Davies, M., Aggleton, J. P., & Vann, S. D. (2010). Effects of selective granular retrosplenial cortex lesions on spatial working memory in rats. Behavioural Brain Research, 208(2), 566–575. https://doi.org/10.1016/j.bbr.2010.01.001.
Pothuizen, H. H. J., Davies, M., Albasser, M. M., Aggleton, J. P., & Vann, S. D. (2009). Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: Evidence from immediate‐early gene imaging in rats. European Journal of Neuroscience, 30(5), 877–888. https://doi.org/10.1111/j.1460-9568.2009.06881.x.
Potvin, O., Doré, F. Y., & Goulet, S. (2007). Contributions of the dorsal hippocampus and the dorsal subiculum to processing of idiothetic information and spatial memory. Neurobiology of Learning and Memory, 87(4), 669–678. https://doi.org/10.1016/j.nlm.2007.01.002.
Potvin, O., Doré, F. Y., & Goulet, S. (2009). Lesions of the dorsal subiculum and the dorsal hippocampus impaired pattern separation in a task using distinct and overlapping visual stimuli. Neurobiology of Learning and Memory, 91(3), 287–297. https://doi.org/10.1016/j.nlm.2008.10.003.
Potvin, O., Lemay, F., Dion, M., Corado, G., Doré, F. Y., & Goulet, S. (2010). Contribution of the dorsal subiculum to memory for temporal order and novelty detection using objects, odors, or spatial locations in the rat. Neurobiology of Learning and Memory, 93(3), 330–336. https://doi.org/10.1016/j.nlm.2009.11.007.
Powell, A., Connelly, W. M., Vasalauskaite, A., Nelson, A. J. D., Vann, S. D., Aggleton, J. P., Sengpiel, F., & Ranson, A. (2001). Stable encoding of visual cues in the mouse Retrosplenial cortex. Cerebral Cortex, January, 2020, 1–14. https://doi.org/10.1093/cercor/bhaa030.
Roth, B. L. (2016). DREADDs for neuroscientists. Neuron, 89(4), 683–694. https://doi.org/10.1016/j.neuron.2016.01.040.
Smith, D. M., Barredo, J., & Mizumori, S. J. Y. (2012). Complimentary roles of the hippocampus and retrosplenial cortex in behavioral context discrimination. Hippocampus, 22(5), 1121–1133. https://doi.org/10.1002/hipo.20958.
Sripanidkulchai, K., & Wyss, J. M. (1986). Thalamic projections to retrosplenial cortex in the rat. Journal of Comparative Neurology, 254(2), 143–165. https://doi.org/10.1002/cne.902540202.
Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014). Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 15(10), 655–669. https://doi.org/10.1038/nrn3785.
Sugar, J., Witter, M. P., van Strien, N. M., & Cappaert, N. L. M. (2011). The retrosplenial cortex: Intrinsic connectivity and connections with the (Para)hippocampal region in the rat. An interactive connectome. Frontiers in Neuroinformatics, 5(July), 7. https://doi.org/10.3389/fninf.2011.00007.
Tabachnick, B. G., & Fidell, L. S. (2018). Using multivariate Statitics (7th ed., Vol. 2018). Pearson.
JASP Team (2022). JASP (Version 0.16.3) [Computer software].
Tsai, T. C., Yu, T. H., Hung, Y. C., Fong, L. I., & Hsu, K. S. (2022). Distinct contribution of granular and Agranular subdivisions of the Retrosplenial cortex to remote contextual fear memory retrieval. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 42(5), 877–893. https://doi.org/10.1523/JNEUROSCI.1303-21.2021.
Umaba, R., Kitanishi, T., & Mizuseki, K. (2021). Monosynaptic connection from the subiculum to medial mammillary nucleus neurons projecting to the anterior thalamus and Gudden's ventral tegmental nucleus. Neuroscience Research, 171(xxxx), 1–8. https://doi.org/10.1016/j.neures.2021.01.006.
Vann, S. D., & Aggleton, J. P. (2004). Testing the importance of the retrosplenial guidance system: Effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behavioural Brain Research, 155(1), 97–108. https://doi.org/10.1016/j.bbr.2004.04.005.
Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do? Nature Reviews Neuroscience, 10(11), 792–802. https://doi.org/10.1038/nrn2733.
Vann, S. D., Wilton, L. A. K., Muir, J. L., & Aggleton, J. P. (2003). Testing the importance of the caudal retrosplenial cortex for spatial memory in rats. Behavioural Brain Research, 140(1–2), 107–118. https://doi.org/10.1016/S0166-4328(02)00274-7.
Vogt, B. A., & Paxinos, G. (2012). Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Structure and Function, 219, 185–192. https://doi.org/10.1007/s00429-012-0493-3.
Wesierska, M., Adamska, I., & Malinowska, M. (2009). Retrosplenial cortex lesion affected segregation of spatial information in place avoidance task in the rat. Neurobiology of Learning and Memory, 91(1), 41–49. https://doi.org/10.1016/j.nlm.2008.09.005.
Witter, M. P. (2006). Connections of the subiculum of the rat: Topography in relation to columnar and laminar organization. Behavioural Brain Research, 174(2), 251–264. https://doi.org/10.1016/j.bbr.2006.06.022.
Witter, M. P., Ostendorf, R. H., & Groenewegen, H. J. (1990). Heterogeneity in the dorsal subiculum of the rat. Distinct neuronal zones project to different cortical and subcortical targets. European Journal of Neuroscience, 2(8), 718–725. https://doi.org/10.1111/j.1460-9568.1990.tb00462.x.
Wolbers, T., & Büchel, C. (2005). Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. Journal of Neuroscience, 25(13), 3333–3340. https://doi.org/10.1523/JNEUROSCI.4705-04.2005.
Yamawaki, N., Corcoran, K. A., Guedea, A. L., Shepherd, G. M. G., & Radulovic, J. (2019). Differential contributions of glutamatergic hippocampal→Retrosplenial cortical projections to the formation and persistence of context memories. Cerebral Cortex, 29(6), 2728–2736. https://doi.org/10.1093/cercor/bhy142.
Yamawaki, N., Li, X., Lambot, L., Ren, L. Y., Radulovic, J., & Shepherd, G. M. G. (2019). Long‐range inhibitory intersection of a retrosplenial thalamocortical circuit by apical tuft‐targeting CA1 neurons. Nature Neuroscience, 22(April), 618–626. https://doi.org/10.1038/s41593-019-0355-x.
Yamawaki, N., Radulovic, J., & Shepherd, G. M. G. (2016). A corticocortical circuit directly links retrosplenial cortex to M2 in the mouse. Journal of Neuroscience, 36(36), 9365–9374. https://doi.org/10.1523/JNEUROSCI.1099-16.2016.
Brennan, E. K., Jedrasiak‐Cape, I., Kailasa, S., Rice, S. P., Sudhakar, S. K., & Ahmed, O. J. (2021). Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex. eLife, 10, e62207. https://doi.org/10.7554/eLife.62207.
Sutherland, R. J., & Hoesing, J. M. (1993). Posterior cingulate cortex and spatial memory: A microlimnology analysis. Neurobiology of Cingulate Cortex and Limbic Thalamus, 461–477. https://doi.org/10.1007/978-1-4899-6704-6&#95;17.
Paxinos, G., & Watson, C. (2004). The rat brain in stereotaxic coordinates (5th ed.). Elsevier Academic Press.
معلومات مُعتمدة: 108891/B/15/Z United Kingdom WT_ Wellcome Trust; 103722/Z14/Z United Kingdom WT_ Wellcome Trust
فهرسة مساهمة: Keywords: Chemogenetics; Retrosplenial cortex; anatomy; dorsal subiculum; spatial memory; working memory
تواريخ الأحداث: Date Created: 20240318 Date Completed: 20240521 Latest Revision: 20240521
رمز التحديث: 20240521
DOI: 10.1111/ejn.16303
PMID: 38494604
قاعدة البيانات: MEDLINE
الوصف
تدمد:1460-9568
DOI:10.1111/ejn.16303