دورية أكاديمية

Restraining the power of Proteolysis Targeting Chimeras in the cage: A necessary and important refinement for therapeutic safety.

التفاصيل البيبلوغرافية
العنوان: Restraining the power of Proteolysis Targeting Chimeras in the cage: A necessary and important refinement for therapeutic safety.
المؤلفون: Zhang R; Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China., Xie S; Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China., Ran J; Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, China., Li T; Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China.
المصدر: Journal of cellular physiology [J Cell Physiol] 2024 May; Vol. 239 (5), pp. e31255. Date of Electronic Publication: 2024 Mar 19.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
مواضيع طبية MeSH: Proteasome Endopeptidase Complex*/metabolism , Proteolysis*/drug effects , Proteolysis Targeting Chimera*, Animals ; Humans ; Peptides/metabolism ; Ubiquitin/metabolism
مستخلص: Proteolysis Targeting Chimeras (PROTACs) represent a significant advancement in therapeutic drug development by leveraging the ubiquitin-proteasome system to enable targeted protein degradation, particularly impacting oncology. This review delves into the various types of PROTACs, such as peptide-based, nucleic acid-based, and small molecule PROTACs, each addressing distinct challenges in protein degradation. It also discusses innovative strategies like bridged PROTACs and conditional switch-activated PROTACs, offering precise targeting of previously "undruggable" proteins. The potential of PROTACs extends beyond oncology, with ongoing research and technological advancements needed to maximize their therapeutic potential. Future progress in this field relies on interdisciplinary collaboration and the integration of advanced computational tools to open new treatment avenues across various diseases.
(© 2024 Wiley Periodicals LLC.)
References: Ahn, G., Banik, S. M., Miller, C. L., Riley, N. M., Cochran, J. R., & Bertozzi, C. R. (2021). LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nature Chemical Biology, 17(9), 937–946. https://doi.org/10.1038/s41589-021-00770-1.
An, S., & Fu, L. (2018). Small‐molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 36, 553–562. https://doi.org/10.1016/j.ebiom.2018.09.005.
Baker, I. M., Smalley, J. P., Sabat, K. A., Hodgkinson, J. T., & Cowley, S. M. (2023). Comprehensive transcriptomic analysis of novel class I HDAC proteolysis targeting chimeras (PROTACs). Biochemistry, 62(3), 645–656. https://doi.org/10.1021/acs.biochem.2c00288.
Banik, S. M., Pedram, K., Wisnovsky, S., Ahn, G., Riley, N. M., & Bertozzi, C. R. (2020). Lysosome‐targeting chimaeras for degradation of extracellular proteins. Nature, 584(7820), 291–297. https://doi.org/10.1038/s41586-020-2545-9.
Campone, M., Ma, C. X., De Laurentiis, M., Iwata, H., Hurvitz, S. A., Wander, S. A., Danso, M. A., Lu, D. R., Perkins Smith, J., Liu, Y., Tran, L., Anderson, S., & Hamilton, E. P. (2023). VERITAC‐2: A global, randomized phase 3 study of ARV‐471, a proteolysis targeting chimera (PROTAC) estrogen receptor (ER) degrader, vs fulvestrant in ER+/human epidermal growth factor receptor 2 (HER2)− advanced breast cancer. Journal of Clinical Oncology, 41(16_Suppl), TPS1122. https://doi.org/10.1200/JCO.2023.41.16_suppl.TPS1122.
Cantley, J., Ye, X., Rousseau, E., Januario, T., Hamman, B. D., Rose, C. M., Cheung, T. K., Hinkle, T., Soto, L., Quinn, C., Harbin, A., Bortolon, E., Chen, X., Haskell, R., Lin, E., Yu, S. F., Del Rosario, G., Chan, E., Dunlap, D., … Yauch, R. L. (2022). Selective PROTAC‐mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. Nature Communications, 13(1), 6814. https://doi.org/10.1038/s41467-022-34562-5.
Chan, K., Sathyamurthi, P. S., Queisser, M. A., Mullin, M., Shrives, H., Coe, D. M., & Burley, G. A. (2023). Antibody‐proteolysis targeting chimera conjugate enables selective degradation of receptor‐interacting serine/threonine‐protein kinase 2 in HER2+ cell lines. Bioconjugate Chemistry, 34(11), 2049–2054. https://doi.org/10.1021/acs.bioconjchem.3c00366.
Chang, H., & Zou, Z. (2020). Targeting autophagy to overcome drug resistance: Further developments. Journal of Hematology & Oncology, 13(1), 159. https://doi.org/10.1186/s13045-020-01000-2.
Chang, M., Gao, F., Pontigon, D., Gnawali, G., Xu, H., & Wang, W. (2023). Bioorthogonal PROTAC prodrugs enabled by on‐target activation. Journal of the American Chemical Society, 145(25), 14155–14163. https://doi.org/10.1021/jacs.3c05159.
Chen, C., Yang, Y., Wang, Z., Li, H., Dong, C., & Zhang, X. (2023). Recent advances in pro‐PROTAC development to address on‐target off‐tumor toxicity. Journal of Medicinal Chemistry, 66(13), 8428–8440. https://doi.org/10.1021/acs.jmedchem.3c00302.
Chen, J. J., Jin, J. M., Gu, W. J., Zhao, Z., Yuan, H., Zhou, Y. D., Nagle, D. G., Xi, Q. L., Zhang, X. M., Sun, Q. Y., Wu, Y., Zhang, W. D., & Luan, X. (2023). Crizotinib‐based proteolysis targeting chimera suppresses gastric cancer by promoting MET degradation. Cancer Science, 114(5), 1958–1971. https://doi.org/10.1111/cas.15733.
Chen, L., Wan, X., Shan, X., Zha, W., & Fan, R. (2022). Smart PROTACs enable controllable protein degradation for precision cancer therapy. Molecular Diagnosis & Therapy, 26(3), 283–291. https://doi.org/10.1007/s40291-022-00586-2.
Chen, M., Zhou, P., Kong, Y., Li, J., Li, Y., Zhang, Y., Ran, J., Zhou, J., Chen, Y., & Xie, S. (2023). Inducible degradation of oncogenic nucleolin using an aptamer‐based PROTAC. Journal of Medicinal Chemistry, 66(2), 1339–1348. https://doi.org/10.1021/acs.jmedchem.2c01557.
Chen, Z., Chen, M., Liu, R., Fan, H., & Zhang, J. (2023). A cocktail therapeutic strategy based on clofarabine‐containing aptamer‐PROTAC for enhanced cancer therapy. Chemical Communications, 59(77), 11560–11563. https://doi.org/10.1039/d3cc02904b.
Cheng, W., Li, S., Wen, X., Han, S., Wang, S., Wei, H., Song, Z., Wang, Y., Tian, X., & Zhang, X. (2021). Development of hypoxia‐activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chemical Communications, 57(95), 12852–12855. https://doi.org/10.1039/d1cc05715d.
Cheng, X., Hu, S., & Cheng, K. (2023). Microneedle patch delivery of PROTACs for anti‐cancer therapy. ACS Nano, 17(12), 11855–11868. https://doi.org/10.1021/acsnano.3c03166.
Cieślak, M., & Słowianek, M. (2023). Cereblon‐recruiting PROTACs: Will new drugs have to face old challenges? Pharmaceutics, 15(3), 812. https://doi.org/10.3390/pharmaceutics15030812.
Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B., & Wells, J. A. (2021). Development of antibody‐based PROTACs for the degradation of the cell‐surface immune checkpoint protein PD‐L1. Journal of the American Chemical Society, 143(2), 593–598. https://doi.org/10.1021/jacs.0c10008.
Davda, J., Declerck, P., Hu‐Lieskovan, S., Hickling, T. P., Jacobs, I. A., Chou, J., Salek‐Ardakani, S., & Kraynov, E. (2019). Immunogenicity of immunomodulatory, antibody‐based, oncology therapeutics. Journal for Immunotherapy of Cancer, 7(1), 105. https://doi.org/10.1186/s40425-019-0586-0.
Do, T. C., Lau, J. W., Sun, C., Liu, S., Kha, K. T., Lim, S. T., Oon, Y. Y., Kwan, Y. P., Ma, J. J., Mu, Y., Liu, X., Carney, T. J., Wang, X., & Xing, B. (2022). Hypoxia deactivates epigenetic feedbacks via enzyme‐derived clicking proteolysis‐targeting chimeras. Science Advances, 8(50), eabq2216. https://doi.org/10.1126/sciadv.abq2216.
Edmondson, S. D., Yang, B., & Fallan, C. (2019). Proteolysis targeting chimeras (PROTACs) in ‘beyond rule‐of‐five’ chemical space: Recent progress and future challenges. Bioorganic & Medicinal Chemistry Letters, 29(13), 1555–1564. https://doi.org/10.1016/j.bmcl.2019.04.030.
Fan, H., Zhou, Z., Yu, D., Sun, J., Wang, L., Jia, Y., Tian, J., Mi, W., & Sun, H. (2023). Selective degradation of BRD4 suppresses lung cancer cell proliferation using GSH‐responsive PROTAC precursors. Bioorganic Chemistry, 140, 106793. https://doi.org/10.1016/j.bioorg.2023.106793.
Fan, R., He, S., Wang, Y., Qiao, J., Liu, H., Galstyan, L., Ghazaryan, A., Cai, H., Feng, S., Ni, P., Dong, G., & Li, H. (2022). Targeted delivery of a PROTAC induced PDEδ degrader by a biomimetic drug delivery system for enhanced cytotoxicity against pancreatic cancer cells. American Journal of Cancer Research, 12(3), 1027–1041.
Gao, H., Sun, X., & Rao, Y. (2020). PROTAC technology: Opportunities and challenges. ACS Medicinal Chemistry Letters, 11(3), 237–240. https://doi.org/10.1021/acsmedchemlett.9b00597.
Ghidini, A., Cléry, A., Halloy, F., Allain, F. H. T., & Hall, J. (2021). RNA‐PROTACs: Degraders of RNA‐binding proteins. Angewandte Chemie International Edition, 60(6), 3163–3169. https://doi.org/10.1002/anie.202012330.
Gu, S., Cui, D., Chen, X., Xiong, X., & Zhao, Y. (2018). PROTACs: An emerging targeting technique for protein degradation in drug discovery. BioEssays, 40(4), e1700247. https://doi.org/10.1002/bies.201700247.
Guenette, R. G., Yang, S. W., Min, J., Pei, B., & Potts, P. R. (2022). Target and tissue selectivity of PROTAC degraders. Chemical Society Reviews, 51(14), 5740–5756. https://doi.org/10.1039/D2CS00200K.
Hamilton, E. P., Schott, A. F., Nanda, R., Lu, H., Keung, C. F., Gedrich, R., Parameswaran, J., Han, H. S., & Hurvitz, S. A. (2022). ARV‐471, an estrogen receptor (ER) PROTAC degrader, combined with palbociclib in advanced ER+/human epidermal growth factor receptor 2–negative (HER2−) breast cancer: Phase 1b cohort (part C) of a phase 1/2 study. Journal of Clinical Oncology, 40(16_Suppl), TPS1120. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS1120.
He, L., Chen, C., Gao, G., Xu, K., & Ma, Z. (2020). ARV‐825‐induced BRD4 protein degradation as a therapy for thyroid carcinoma. Aging, 12(5), 4547–4557. https://doi.org/10.18632/aging.102910.
He, Y., Khan, S., Huo, Z., Lv, D., Zhang, X., Liu, X., Yuan, Y., Hromas, R., Xu, M., Zheng, G., & Zhou, D. (2020). Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. Journal of Hematology & Oncology, 13(1), 103. https://doi.org/10.1186/s13045-020-00924-z.
Jiang, F., Wei, Q., Li, H., Li, H., Cui, Y., Ma, Y., Chen, H., Cao, P., Lu, T., & Chen, Y. (2020). Discovery of novel small molecule induced selective degradation of the bromodomain and extra‐terminal (BET) bromodomain protein BRD4 and BRD2 with cellular potencies. Bioorganic & Medicinal Chemistry, 28(1), 115181. https://doi.org/10.1016/j.bmc.2019.115181.
Jiang, T., Wang, G., Liu, Y., Feng, L., Wang, M., Liu, J., Chen, Y., & Ouyang, L. (2021). Development of small‐molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharmaceutica Sinica B, 11(2), 355–372. https://doi.org/10.1016/j.apsb.2020.05.004.
Kargbo, R. B. (2023). PROTAC: Harnessing targeted chimeras for selective BCL‐2 degradation in cancer treatment. ACS Medicinal Chemistry Letters, 14(5), 541–542. https://doi.org/10.1021/acsmedchemlett.3c00113.
Konstantinidou, M., Li, J., Zhang, B., Wang, Z., Shaabani, S., Ter Brake, F., Essa, K., & Dömling, A. (2019). PROTACs—A game‐changing technology. Expert Opinion on Drug Discovery, 14(12), 1255–1268. https://doi.org/10.1080/17460441.2019.1659242.
Kou, P., Levy, E. S., Nguyen, A. D., Zhang, D., Chen, S., Cui, Y., Zhang, X., Broccatelli, F., Pizzano, J., Cantley, J., Bortolon, E., Rousseau, E., Berlin, M., Dragovich, P., & Sethuraman, V. (2023). Development of liposome systems for enhancing the PK properties of bivalent pROTACs. Pharmaceutics, 15(8), 2098. https://doi.org/10.3390/pharmaceutics15082098.
Kurimchak, A. M., Herrera‐Montávez, C., Montserrat‐Sangrà, S., Araiza‐Olivera, D., Hu, J., Neumann‐Domer, R., Kuruvilla, M., Bellacosa, A., Testa, J. R., Jin, J., & Duncan, J. S. (2022). The drug efflux pump MDR1 promotes intrinsic and acquired resistance to PROTACs in cancer cells. Science Signaling, 15(749), eabn2707. https://doi.org/10.1126/scisignal.abn2707.
Lebraud, H., Wright, D. J., Johnson, C. N., & Heightman, T. D. (2016). Protein degradation by in‐cell self‐assembly of proteolysis targeting chimeras. ACS Central Science, 2(12), 927–934. https://doi.org/10.1021/acscentsci.6b00280.
Li, Z., Lim, S. L., Tao, Y., Li, X., Xie, Y., Yang, C., Zhang, Z., Jiang, Y., Zhang, X., Cao, X., Wang, H., Qian, G., Wu, Y., Li, M., Fang, F., Liu, Y., Fu, M., Ding, X., Zhu, Z., … Pan, J. (2020). PROTAC bromodomain inhibitor ARV‐825 displays anti‐tumor activity in neuroblastoma by repressing expression of MYCN or c‐Myc. Frontiers in Oncology, 10, 574525. https://doi.org/10.3389/fonc.2020.574525.
Li, Z., Zhu, C., Ding, Y., Fei, Y., & Lu, B. (2020). ATTEC: A potential new approach to target proteinopathies. Autophagy, 16(1), 185–187. https://doi.org/10.1080/15548627.2019.1688556.
Liu, H., Ren, C., Sun, R., Wang, H., Zhan, Y., Yang, X., Jiang, B., & Chen, H. (2022). Reactive oxygen species‐responsive Pre‐PROTAC for tumor‐specific protein degradation. Chemical Communications, 58(72), 10072–10075. https://doi.org/10.1039/d2cc03367d.
Liu, H. J., Chen, W., Wu, G., Zhou, J., Liu, C., Tang, Z., Huang, X., Gao, J., Xiao, Y., Kong, N., Joshi, N., Cao, Y., Abdi, R., & Tao, W. (2023). Glutathione‐scavenging nanoparticle‐mediated PROTACs delivery for targeted protein degradation and amplified antitumor effects. Advanced Science, 10(16), e2207439. https://doi.org/10.1002/advs.202207439.
Liu, J., Chen, H., Kaniskan, H. Ü., Xie, L., Chen, X., Jin, J., & Wei, W. (2021). TF‐PROTACs enable targeted degradation of transcription factors. Journal of the American Chemical Society, 143(23), 8902–8910. https://doi.org/10.1021/jacs.1c03852.
Liu, J., Chen, H., Liu, Y., Shen, Y., Meng, F., Kaniskan, H. Ü., Jin, J., & Wei, W. (2021). Cancer selective target degradation by folate‐caged PROTACs. Journal of the American Chemical Society, 143(19), 7380–7387. https://doi.org/10.1021/jacs.1c00451.
Liu, J., Chen, H., Ma, L., He, Z., Wang, D., Liu, Y., Lin, Q., Zhang, T., Gray, N., Kaniskan, H. Ü., Jin, J., & Wei, W. (2020). Light‐induced control of protein destruction by opto‐PROTAC. Science Advances, 6(8), eaay5154. https://doi.org/10.1126/sciadv.aay5154.
Liu, J., Peng, Y., Inuzuka, H., & Wei, W. (2022). Targeting micro‐environmental pathways by PROTACs as a therapeutic strategy. Seminars in Cancer Biology, 86(Pt 2), 269–279. https://doi.org/10.1016/j.semcancer.2022.07.001.
Liu, X., Zhang, Y., Ward, L. D., Yan, Q., Bohnuud, T., Hernandez, R., Lao, S., Yuan, J., & Fan, F. (2021). A proteomic platform to identify off‐target proteins associated with therapeutic modalities that induce protein degradation or gene silencing. Scientific Reports, 11(1), 15856. https://doi.org/10.1038/s41598-021-95354-3.
Lucero, B., Francisco, K. R., Liu, L. J., Caffrey, C. R., & Ballatore, C. (2023). Protein‐protein interactions: Developing small‐molecule inhibitors/stabilizers through covalent strategies. Trends in Pharmacological Sciences, 44(7), 474–488. https://doi.org/10.1016/j.tips.2023.04.007.
Ma, B., Fan, Y., Zhang, D., Wei, Y., Jian, Y., Liu, D., Wang, Z., Gao, Y., Ma, J., Chen, Y., Xu, S., & Li, L. (2022). De novo design of an androgen receptor DNA binding domain‐targeted peptide PROTAC for prostate cancer therapy. Advanced Science, 9(28), e2201859. https://doi.org/10.1002/advs.202201859.
Ma, H., Qi, F., Ji, L., Xie, S., Ran, J., Liu, M., Gao, J., & Zhou, J. (2022). NuMA forms condensates through phase separation to drive spindle pole assembly. Journal of Molecular Cell Biology, 14(1), mjab081. https://doi.org/10.1093/jmcb/mjab081.
Ma, L., Wang, J., Zhang, Y., Fang, F., Ling, J., Chu, X., Zhang, Z., Tao, Y., Li, X., Tian, Y., Li, Z., Sang, X., Zhang, K., Lu, L., Wan, X., Chen, Y., Yu, J., Zhuo, R., Wu, S., … Hu, S. (2022). BRD4 PROTAC degrader MZ1 exerts anticancer effects in acute myeloid leukemia by targeting c‐Myc and ANP32B genes. Cancer Biology & Therapy, 23(1), 1–15. https://doi.org/10.1080/15384047.2022.2125748.
Mi, D., Li, Y., Gu, H., Li, Y., & Chen, Y. (2023). Current advances of small molecule E3 ligands for proteolysis‐targeting chimeras design. European Journal of Medicinal Chemistry, 256, 115444. https://doi.org/10.1016/j.ejmech.2023.115444.
Mukerjee, N., Maitra, S., Ghosh, A., Subramaniyan, V., & Sharma, R. (2023). Exosome‐mediated PROTACs delivery to target viral infections. Drug Development Research, 84(6), 1031–1036. https://doi.org/10.1002/ddr.22091.
Nalawansha, D. A., & Crews, C. M. (2020). PROTACs: An emerging therapeutic modality in precision medicine. Cell Chemical Biology, 27(8), 998–1014. https://doi.org/10.1016/j.chembiol.2020.07.020.
Naro, Y., Darrah, K., & Deiters, A. (2020). Optical control of small molecule‐induced protein degradation. Journal of the American Chemical Society, 142(5), 2193–2197. https://doi.org/10.1021/jacs.9b12718.
Nguyen, T. M., Sreekanth, V., Deb, A., Kokkonda, P., Tiwari, P. K., Donovan, K. A., Shoba, V., Chaudhary, S. K., Mercer, J. A. M., Lai, S., Sadagopan, A., Jan, M., Fischer, E. S., Liu, D. R., Ebert, B. L., & Choudhary, A. (2023). Proteolysis‐targeting chimeras with reduced off‐targets. Nature Chemistry, 16, 218–228. https://doi.org/10.1038/s41557-023-01379-8.
Pasieka, A., Diamanti, E., Uliassi, E., & Laura Bolognesi, M. (2023). Click chemistry and targeted degradation: A winning combination for medicinal chemists. ChemMedChem, 18(20), e202300422. https://doi.org/10.1002/cmdc.202300422.
Patil, K. M., Chin, D., Seah, H. L., Shi, Q., Lim, K. W., & Phan, A. T. (2021). G4‐PROTAC: Targeted degradation of a G‐quadruplex binding protein. Chemical Communications, 57(95), 12816–12819. https://doi.org/10.1039/d1cc05025g.
Ran, J., Liu, M., Feng, J., Li, H., Ma, H., Song, T., Cao, Y., Zhou, P., Wu, Y., Yang, Y., Yang, Y., Yu, F., Guo, H., Zhang, L., Xie, S., Li, D., Gao, J., Zhang, X., Zhu, X., & Zhou, J. (2020). ASK1‐mediated phosphorylation blocks HDAC6 ubiquitination and degradation to drive the disassembly of photoreceptor connecting cilia. Developmental Cell, 53(3), 287–299.e5. https://doi.org/10.1016/j.devcel.2020.03.010.
Sachkova, A. A., Andreeva, D. V., Tikhomirov, A. S., Scherbakov, A. M., Salnikova, D. I., Sorokin, D. V., Bogdanov, F. B., Rysina, Y. D., Shchekotikhin, A. E., Shchegravina, E. S., & Fedorov, A. Y. (2022). Design, synthesis and in vitro investigation of cabozantinib‐based PROTACs to target c‐Met kinase. Pharmaceutics, 14(12), 2829. https://doi.org/10.3390/pharmaceutics14122829.
Sakamoto, K. M., Kim, K. B., Verma, R., Ransick, A., Stein, B., Crews, C. M., & Deshaies, R. J. (2003). Development of Protacs to target cancer‐promoting proteins for ubiquitination and degradation. Molecular & Cellular Proteomics, 2(12), 1350–1358. https://doi.org/10.1074/mcp.T300009-MCP200.
Saraswat, A., Patki, M., Fu, Y., Barot, S., Dukhande, V. V., & Patel, K. (2020). Nanoformulation of proteolysis targeting chimera targeting ‘undruggable’ c‐Myc for the treatment of pancreatic cancer. Nanomedicine, 15(18), 1761–1777. https://doi.org/10.2217/nnm-2020-0156.
Sauna, Z. E., Lagassé, D., Pedras‐Vasconcelos, J., Golding, B., & Rosenberg, A. S. (2018). Evaluating and mitigating the immunogenicity of therapeutic proteins. Trends in Biotechnology, 36(10), 1068–1084. https://doi.org/10.1016/j.tibtech.2018.05.008.
Schneekloth, Jr., J. S., Fonseca, F. N., Koldobskiy, M., Mandal, A., Deshaies, R., Sakamoto, K., & Crews, C. M. (2004). Chemical genetic control of protein levels: Selective in vivo targeted degradation. Journal of the American Chemical Society, 126(12), 3748–3754. https://doi.org/10.1021/ja039025z.
Schott, A. F., Hurvitz, S., Ma, C., Hamilton, E., Nanda, R., Zahrah, G., Hunter, N., Tan, A. R., Telli, M., Mesias, J. A., Jeselsohn, R., Munster, P., Lu, H., Gedrich, R., Mather, C., Parameswaran, J., & Han, H. S. (2023). Abstract GS3‐03: GS3‐03 ARV‐471, a PROTAC® estrogen receptor (ER) degrader in advanced ER‐positive/human epidermal growth factor receptor 2 (HER2)‐negative breast cancer: Phase 2 expansion (VERITAC) of a phase 1/2 study. Cancer Research, 83(5_Supplment), GS3‐03. https://doi.org/10.1158/1538-7445.SABCS22-GS3-03.
Shankar, G., Shores, E., Wagner, C., & Mire‐Sluis, A. (2006). Scientific and regulatory considerations on the immunogenicity of biologics. Trends in Biotechnology, 24(6), 274–280. https://doi.org/10.1016/j.tibtech.2006.04.001.
Si, R., Hai, P., Zheng, Y., Wang, J., Zhang, Q., Li, Y., Pan, X., & Zhang, J. (2023). Discovery of intracellular self‐assembly protein degraders driven by tumor‐specific activatable bioorthogonal reaction. European Journal of Medicinal Chemistry, 257, 115497. https://doi.org/10.1016/j.ejmech.2023.115497.
Silva, M. C., Nandi, G., Donovan, K. A., Cai, Q., Berry, B. C., Nowak, R. P., Fischer, E. S., Gray, N. S., Ferguson, F. M., & Haggarty, S. J. (2022). Discovery and optimization of tau targeted protein degraders enabled by patient induced pluripotent stem cells‐derived neuronal models of tauopathy. Frontiers in Cellular Neuroscience, 16, 801179. https://doi.org/10.3389/fncel.2022.801179.
Suhorutsenko, J., Oskolkov, N., Arukuusk, P., Kurrikoff, K., Eriste, E., Copolovici, D.‐M., & Langel, Ü. (2011). Cell‐penetrating peptides, pepfects, show no evidence of toxicity and immunogenicity in vitro and in vivo. Bioconjugate Chemistry, 22(11), 2255–2262. https://doi.org/10.1021/bc200293d.
Sun, S., Xu, Z., Hu, H., Zheng, M., Zhang, L., Xie, W., Sun, L., Liu, P., Li, T., Zhang, L., Chen, M., Zhu, X., Liu, M., Yang, Y., & Zhou, J. (2023). The Bacillus cereus toxin alveolysin disrupts the intestinal epithelial barrier by inducing microtubule disorganization through CFAP100. Science Signaling, 16(785), eade8111. https://doi.org/10.1126/scisignal.ade8111.
Sun, X., Gao, H., Yang, Y., He, M., Wu, Y., Song, Y., & Rao, Y. (2019). PROTACs: Great opportunities for academia and industry. Signal Transduction and Targeted Therapy, 4(1), 64. https://doi.org/10.1038/s41392-019-0101-6.
Takahashi, D., Moriyama, J., Nakamura, T., Miki, E., Takahashi, E., Sato, A., Akaike, T., Itto‐Nakama, K., & Arimoto, H. (2019). AUTACs: Cargo‐specific degraders using selective autophagy. Molecular Cell, 76(5), 797–810.e10. https://doi.org/10.1016/j.molcel.2019.09.009.
Teh, J., Bortolon, E., Pizzano, J., Pannone, M., Landrette, S., Gedrich, R., & Taylor, I. (2023). Abstract 3075: Enhanced efficacy of ARV‐471, a novel PROTAC® estrogen receptor degrader, in combination with targeted agents in estrogen receptor‐positive (ER+) breast cancer models. Cancer Research, 83(7_Supplment), 3075. https://doi.org/10.1158/1538-7445.AM2023-3075.
Toure, M., & Crews, C. M. (2016). Small‐molecule PROTACS: New approaches to protein degradation. Angewandte Chemie International Edition, 55(6), 1966–1973. https://doi.org/10.1002/anie.201507978.
Vicente, A. T. S., & Salvador, J. A. R. (2022). MDM2‐Based proteolysis‐targeting chimeras (PROTACs): An innovative drug strategy for cancer treatment. International Journal of Molecular Sciences, 23(19), 11068. https://doi.org/10.3390/ijms231911068.
Vu, L. P., Diehl, C. J., Casement, R., Bond, A. G., Steinebach, C., Strašek, N., Bricelj, A., Perdih, A., Schnakenburg, G., Sosič, I., Ciulli, A., & Gütschow, M. (2023). Expanding the structural diversity at the phenylene core of ligands for the von Hippel–Lindau E3 ubiquitin ligase: Development of highly potent hypoxia‐inducible factor‐1α stabilizers. Journal of Medicinal Chemistry, 66(18), 12776–12811. https://doi.org/10.1021/acs.jmedchem.3c00434.
Wang, H., Chen, M., Zhang, X., Xie, S., Qin, J., & Li, J. (2024). Peptide‐based PROTACs: Current challenges and future perspectives. Current Medicinal Chemistry, 31(2), 208–222. https://doi.org/10.2174/0929867330666230130121822.
Wang, K., Dai, X., Yu, A., Feng, C., Liu, K., & Huang, L. (2022). Peptide‐based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD‐L1 expression. Journal of Experimental & Clinical Cancer Research, 41(1), 289. https://doi.org/10.1186/s13046-022-02483-2.
Wu, S., Jiang, Y., Hong, Y., Chu, X., Zhang, Z., Tao, Y., Fan, Z., Bai, Z., Li, X., Chen, Y., Li, Z., Ding, X., Lv, H., Du, X., Lim, S. L., Zhang, Y., Huang, S., Lu, J., Pan, J., & Hu, S. (2021). BRD4 PROTAC degrader ARV‐825 inhibits T‐cell acute lymphoblastic leukemia by targeting ‘undruggable’ Myc‐pathway genes. Cancer Cell International, 21(1), 230. https://doi.org/10.1186/s12935-021-01908-w.
Xie, J., Bi, Y., Zhang, H., Dong, S., Teng, L., Lee, R. J., & Yang, Z. (2020). Cell‐penetrating peptides in diagnosis and treatment of human diseases: From preclinical research to clinical application. Frontiers in Pharmacology, 11, 697. https://doi.org/10.3389/fphar.2020.00697.
Xie, S., Zhang, L., Dong, D., Ge, R., He, Q., Fan, C., Xie, W., Zhou, J., Li, D., & Liu, M. (2020). HDAC6 regulates antibody‐dependent intracellular neutralization of viruses via deacetylation of TRIM21. Journal of Biological Chemistry, 295(42), 14343–14351. https://doi.org/10.1074/jbc.RA119.011006.
Xie, W., Chen, M., Zhai, Z., Li, H., Song, T., Zhu, Y., Dong, D., Zhou, P., Duan, L., Zhang, Y., Li, D., Liu, X., Zhou, J., & Liu, M. (2021). HIV‐1 exposure promotes PKG1‐mediated phosphorylation and degradation of stathmin to increase epithelial barrier permeability. Journal of Biological Chemistry, 296, 100644. https://doi.org/10.1016/j.jbc.2021.100644.
Xie, W., Li, D., Dong, D., Li, Y., Zhang, Y., Duan, L., Liu, X., Meng, W., Liu, M., & Zhou, J. (2020). HIV‐1 exposure triggers autophagic degradation of stathmin and hyperstabilization of microtubules to disrupt epithelial cell junctions. Signal Transduction and Targeted Therapy, 5(1), 79. https://doi.org/10.1038/s41392-020-0175-1.
Xiong, Y., Zhong, Y., Yim, H., Yang, X., Park, K. S., Xie, L., Poulikakos, P. I., Han, X., Xiong, Y., Chen, X., Liu, J., & Jin, J. (2022). Bridged proteolysis targeting chimera (PROTAC) enables degradation of undruggable targets. Journal of the American Chemical Society, 144(49), 22622–22632. https://doi.org/10.1021/jacs.2c09255.
Xu, Y., Yuan, Y., Fu, D. Q., Fu, Y., Zhou, S., Yang, W. T., Wang, X. Y., Li, G. X., Dong, J., Du, F., Huang, X., Wang, Q. W., & Tang, Z. (2023). The aptamer‐based RNA‐PROTAC. Bioorganic & Medicinal Chemistry, 86, 117299. https://doi.org/10.1016/j.bmc.2023.117299.
Xue, G., Wang, K., Zhou, D., Zhong, H., & Pan, Z. (2019). Light‐induced protein degradation with photocaged PROTACs. Journal of the American Chemical Society, 141(46), 18370–18374. https://doi.org/10.1021/jacs.9b06422.
Yang, C., Yang, Y., Li, Y., Ni, Q., & Li, J. (2023). Radiotherapy‐triggered proteolysis targeting chimera prodrug activation in tumors. Journal of the American Chemical Society, 145(1), 385–391. https://doi.org/10.1021/jacs.2c10177.
Yang, Z., Pang, Q., Zhou, J., Xuan, C., & Xie, S. (2023). Leveraging aptamers for targeted protein degradation. Trends in Pharmacological Sciences, 44(11), 776–785. https://doi.org/10.1016/j.tips.2023.05.008.
Zeng, S., Ye, Y., Xia, H., Min, J., Xu, J., Wang, Z., Pan, Y., Zhou, X., & Huang, W. (2023). Current advances and development strategies of orally bioavailable PROTACs. European Journal of Medicinal Chemistry, 261, 115793. https://doi.org/10.1016/j.ejmech.2023.115793.
Zhang, C., Zeng, Z., Cui, D., He, S., Jiang, Y., Li, J., Huang, J., & Pu, K. (2021). Semiconducting polymer nano‐PROTACs for activatable photo‐immunometabolic cancer therapy. Nature Communications, 12(1), 2934. https://doi.org/10.1038/s41467-021-23194-w.
Zhang, H. T., Peng, R., Chen, S., Shen, A., Zhao, L., Tang, W., Wang, X. H., Li, Z. Y., Zha, Z. G., Yi, M., & Zhang, L. (2022). Versatile nano‐PROTAC‐induced epigenetic reader degradation for efficient lung cancer therapy. Advanced Science, 9(29), e2202039. https://doi.org/10.1002/advs.202202039.
Zhang, N.‐Y., Hou, D.‐Y., Hu, X.‐J., Liang, J.‐X., Wang, M.‐D., Song, Z.‐Z., Yi, L., Wang, Z. J., An, H. W., Xu, W., & Wang, H. (2023). Nano proteolysis targeting chimeras (PROTACs) with anti‐hook effect for tumor therapy. Angewandte Chemie International Edition, 62(37), e202308049. https://doi.org/10.1002/anie.202308049.
Zhong, J., Zhao, R., Wang, Y., Su, Y., & Lan, X. (2024). Nano‐PROTACs: State of the art and perspectives. Nanoscale, 16(9), 4378–4391. https://doi.org/10.1039/D3NR06059D.
Zhong, T., Wu, X., Xie, W., Luo, X., Song, T., Sun, S., Luo, Y., Li, D., Liu, M., Xie, S., & Zhou, J. (2022). ENKD1 promotes epidermal stratification by regulating spindle orientation in basal keratinocytes. Cell Death & Differentiation, 29(9), 1719–1729. https://doi.org/10.1038/s41418-022-00958-5.
Zhu, X., Liu, W., Tang, X., Chen, Y., Ge, X., Ke, Q., Liang, X., Gan, Y., Zheng, Y., Zou, M., Deng, M., Liu, Y., Li, D. W. C., & Gong, L. (2023). The BET PROTAC inhibitor dBET6 protects against retinal degeneration and inhibits the cGAS‐STING in response to light damage. Journal of Neuroinflammation, 20(1), 119. https://doi.org/10.1186/s12974-023-02804-y.
Zorko, M., Jones, S., & Langel, Ü. (2022). Cell‐penetrating peptides in protein mimicry and cancer therapeutics. Advanced Drug Delivery Reviews, 180, 114044. https://doi.org/10.1016/j.addr.2021.114044.
معلومات مُعتمدة: 31991193 National Natural Science Foundation of China; 32230025 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: PROTACs; degradation; disease; ubiquitination
المشرفين على المادة: 0 (Peptides)
EC 3.4.25.1 (Proteasome Endopeptidase Complex)
0 (Proteolysis Targeting Chimera)
0 (Ubiquitin)
تواريخ الأحداث: Date Created: 20240319 Date Completed: 20240515 Latest Revision: 20240531
رمز التحديث: 20240601
DOI: 10.1002/jcp.31255
PMID: 38501341
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4652
DOI:10.1002/jcp.31255