دورية أكاديمية

Pediococcus spp. - mediated competition interaction within Daqu microbiota determines the temperature formation and metabolic profiles.

التفاصيل البيبلوغرافية
العنوان: Pediococcus spp. - mediated competition interaction within Daqu microbiota determines the temperature formation and metabolic profiles.
المؤلفون: Wu S; Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.; Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China., Lu J; Guizhou Guotai Liquor Group Co. Ltd., Zunyi, Guizhou, China., Li C; Guizhou Guotai Liquor Group Co. Ltd., Zunyi, Guizhou, China., Du H; Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.; Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China., Xu Y; Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.; Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China.
المصدر: Applied and environmental microbiology [Appl Environ Microbiol] 2024 Apr 17; Vol. 90 (4), pp. e0179023. Date of Electronic Publication: 2024 Mar 20.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 7605801 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-5336 (Electronic) Linking ISSN: 00992240 NLM ISO Abbreviation: Appl Environ Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, American Society for Microbiology.
مواضيع طبية MeSH: Pediococcus* , Microbiota*/physiology, Temperature ; Alcoholic Beverages/analysis ; Fermentation ; Fungi/physiology ; Metabolome ; Saccharomyces cerevisiae
مستخلص: Fermented microbiota is critical to the formation of microenvironment and metabolic profiles in spontaneous fermentation. Microorganisms generate a diverse array of metabolites concurrent with the release of heat energy. In the case of Daqu fermentation, the peak temperature exceeded 60°C, forming a typical high-temperature fermentation system known as high-temperature Daqu. However, microorganisms that cause the quality variation in Daqu and how they affect the functional microbiota and microenvironment in the fermentation process are not yet clear. This study adopted high-throughput sequencing and monitored the dynamic fluctuations of metabolites and environmental factors to identify the pivotal microorganism responsible for the alterations in interaction patterns of functional keystone taxa and quality decline in the fermentation system of different operational areas during the in situ fermentation process that had been mainly attributed to operational taxonomic unit (OTU)_22 ( Pediococcus acidilactici ). Additionally, we used isothermal microcalorimetry, plate inhibition experiments, and in vitro simulation fermentation experiments to explore the impact of Pediococcus spp. on heat generation, microorganisms, and metabolite profiles. Results showed the heat peak generated by Pediococcus spp. was significantly lower than that of Bacillus spp., filamentous fungi, and yeast. In addition, the preferential growth of P. acidilactici strain AA3 would obviously affect other strains to colonize through competition, and its metabolites made a significant impact on filamentous fungi. The addition of P. acidilactici strain AA3 in simulated fermentation would cause the loss of pyrazines and acids in metabolites. These evidences showed that the overgrowth of Pediococcus spp. greatly influenced the formation of high temperatures and compounds in solid-state fermentation systems. Our work illustrated the vital impact of interaction variability mediated by Pediococcus spp. for microbial assembly and metabolites, as well as in forming temperature. These results emphasized the functional role of Daqu microbiota in metabolites and heat production and the importance of cooperation in improving the fermentation quality.IMPORTANCEThe stable and high-quality saccharifying and fermenting starter in traditional solid-state fermentation was the prerequisite for liquor brewing. An imbalance of microbial homeostasis in fermentation can adversely impact production quality. Identification of such critical microorganisms and verifying their associations with other fermentation parameters pose a challenge in a traditional fermentation environment. To enhance the quality of spontaneous fermented products, strategies such as bioaugmentation or the control of harmful microorganisms would be employed. This work started with the differences in high-temperature Daqu metabolites to explore a series of functional microorganisms that could potentially contribute to product disparities, and found that the differences in interactions facilitated directly or indirectly by Pediococcus spp. seriously affected the development of microbial communities and metabolites, as well as the formation of the microenvironment. This study not only identified functional microbiota in Daqu that affected fermentation quality, but also demonstrated how microorganisms interact to affect the fermentation system, which would provide guidance for microbial supervision in the actual production process. Besides, the application of isothermal microcalorimetry in this study was helpful for us to understand the heat production capacity of microorganisms and their adaptability to the environment. This study presented a commendable framework for improving and controlling the quality of traditional fermentation and inspired further investigations in similar systems.
Competing Interests: The authors declare no conflict of interest.
References: Food Res Int. 2021 Feb;140:109860. (PMID: 33648178)
Int J Food Microbiol. 2022 Feb 16;363:109493. (PMID: 34953345)
Compr Rev Food Sci Food Saf. 2023 May;22(3):1902-1932. (PMID: 36880579)
Food Res Int. 2022 Jun;156:111298. (PMID: 35651059)
World J Microbiol Biotechnol. 2022 Nov 8;39(1):4. (PMID: 36344843)
Microbiol Spectr. 2022 Oct 26;10(5):e0184422. (PMID: 36135710)
Compr Rev Food Sci Food Saf. 2022 Sep;21(5):4076-4107. (PMID: 36038529)
Food Res Int. 2022 Jul;157:111286. (PMID: 35761594)
Appl Environ Microbiol. 2020 Jun 2;86(12):. (PMID: 32303548)
ISME J. 2019 Dec;13(12):3093-3101. (PMID: 31511619)
Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):10989-10994. (PMID: 30297403)
Food Sci Anim Resour. 2021 Nov;41(6):1078-1094. (PMID: 34796332)
Bioresour Technol. 2021 Mar;323:124566. (PMID: 33390315)
Appl Environ Microbiol. 2020 Nov 24;86(24):. (PMID: 33036987)
Lett Appl Microbiol. 2013 Jul;57(1):11-8. (PMID: 23594087)
Food Microbiol. 2021 Sep;98:103766. (PMID: 33875202)
J Ind Microbiol Biotechnol. 2015 Dec;42(12):1601-8. (PMID: 26323612)
Nat Methods. 2013 Oct;10(10):996-8. (PMID: 23955772)
Nucleic Acids Res. 2019 Jan 8;47(D1):D259-D264. (PMID: 30371820)
FEMS Microbiol Lett. 2010 Feb;303(1):1-8. (PMID: 19895644)
Food Res Int. 2022 Jun;156:111191. (PMID: 35651047)
Appl Environ Microbiol. 2021 Apr 13;87(9):. (PMID: 33608301)
Front Microbiol. 2021 Jan 28;11:603721. (PMID: 33584567)
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. (PMID: 23193283)
Bioresour Technol. 2022 Feb;345:126549. (PMID: 34902488)
Int J Food Microbiol. 2021 Aug 2;351:109262. (PMID: 34090033)
Food Res Int. 2021 Feb;140:110037. (PMID: 33648263)
Microb Biotechnol. 2010 May;3(3):269-84. (PMID: 21255327)
Microbiol Mol Biol Rev. 2012 Sep;76(3):597-625. (PMID: 22933562)
Food Res Int. 2022 Aug;158:111568. (PMID: 35840256)
Int J Food Microbiol. 2023 Jan 16;385:109995. (PMID: 36368058)
Microbiome. 2021 Jan 31;9(1):35. (PMID: 33517892)
mSystems. 2022 Feb 22;7(1):e0099121. (PMID: 35166562)
Appl Environ Microbiol. 2018 Jan 31;84(4):. (PMID: 29196296)
Food Microbiol. 2023 Feb;109:104144. (PMID: 36309458)
Curr Biol. 2012 Oct 9;22(19):1845-50. (PMID: 22959348)
Appl Environ Microbiol. 2017 Nov 16;83(23):. (PMID: 28970223)
Curr Opin Microbiol. 2019 Aug;50:35-41. (PMID: 31627129)
Microbiol Spectr. 2023 Mar 14;:e0510322. (PMID: 36916915)
Nat Rev Microbiol. 2022 Feb;20(2):109-121. (PMID: 34453137)
mSystems. 2022 Aug 30;7(4):e0040122. (PMID: 35862822)
Food Sci Biotechnol. 2018 Nov 30;28(3):841-850. (PMID: 31093442)
Environ Microbiol. 2014 Aug;16(8):2421-32. (PMID: 24329969)
mSystems. 2021 Mar 30;6(2):. (PMID: 33785569)
Nat Methods. 2010 May;7(5):335-6. (PMID: 20383131)
Appl Environ Microbiol. 2020 Apr 1;86(8):. (PMID: 32060021)
FEMS Microbiol Rev. 2021 Aug 17;45(4):. (PMID: 33338228)
Nat Commun. 2023 Jul 4;14(1):3951. (PMID: 37402745)
Appl Environ Microbiol. 2018 Oct 17;84(21):. (PMID: 30120119)
Nat Rev Microbiol. 2018 Sep;16(9):567-576. (PMID: 29789680)
Front Microbiol. 2019 Mar 12;10:472. (PMID: 30930875)
Int J Food Microbiol. 2017 Jun 5;250:59-67. (PMID: 28371716)
Int J Food Microbiol. 2023 Apr 2;390:110118. (PMID: 36796164)
ISME J. 2022 Jan;16(1):296-306. (PMID: 34321619)
فهرسة مساهمة: Keywords: Daqu; Pediococcus; keystone taxa; metabolites; microbial interaction; temperature
تواريخ الأحداث: Date Created: 20240320 Date Completed: 20240418 Latest Revision: 20240925
رمز التحديث: 20240925
مُعرف محوري في PubMed: PMC11022566
DOI: 10.1128/aem.01790-23
PMID: 38506521
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-5336
DOI:10.1128/aem.01790-23