دورية أكاديمية

Harnessing nature's potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity.

التفاصيل البيبلوغرافية
العنوان: Harnessing nature's potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity.
المؤلفون: Ahmad E; Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India., Athar A; Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India., Nimisha; Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India., Zia Q; Department of Medical Laboratory Sciences, Majmaah University, Majmaah, Saudi Arabia., Sharma AK; Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India., Sajid M; Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India., Bharadwaj M; Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India., Ansari MA; Center for Virology, SIST, Jamia Hamdard, New Delhi, 110062, India., Saluja SS; Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India. sundeepsaluja@yahoo.co.in.; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India. sundeepsaluja@yahoo.co.in.
المصدر: Bioprocess and biosystems engineering [Bioprocess Biosyst Eng] 2024 Mar 21. Date of Electronic Publication: 2024 Mar 21.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101088505 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-7605 (Electronic) Linking ISSN: 16157591 NLM ISO Abbreviation: Bioprocess Biosyst Eng Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, Germany : Springer-Verlag, 2001-
مستخلص: With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Foulkes R, Man E, Thind J et al (2020) The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci 8(17):4653–4664. https://doi.org/10.1039/D0BM00558D. (PMID: 10.1039/D0BM00558D32672255)
Ezike TC, Okpala US, Onoja UL (2023) Advances in drug delivery systems, challenges, and future directions. Heliyon 9(6):e17488. https://doi.org/10.1016/j.heliyon.2023.e17488. (PMID: 10.1016/j.heliyon.2023.e174883741668010320272)
Alrushaid N, Khan FA, Al-Suhaimi EA et al (2023) Nanotechnology in cancer diagnosis and treatment. Pharma 15:1025. https://doi.org/10.3390/pharmaceutics15031025. (PMID: 10.3390/pharmaceutics15031025)
Han F, Meng Q, Xie E et al (2023) Engineered biomimetic micro/nanomaterials for tissue regeneration. Front Bioeng Biotechnol 11:1205792. https://doi.org/10.3389/fbioe.2023.1205792. (PMID: 10.3389/fbioe.2023.12057923746944910352664)
Yao Y, Zhou Y, Liu L et al (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193. https://doi.org/10.3389/fmolb.2020.00193. (PMID: 10.3389/fmolb.2020.00193329743857468194)
Tenchov R, Bird R, Curtze AE et al (2021) Lipid nanoparticles─from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15(11):16982–17015. https://doi.org/10.1021/acsnano.1c04996. (PMID: 10.1021/acsnano.1c0499634181394)
Shariatzadeh S, Moghimi N, Khalafi F et al (2022) Metallic nanoparticles for the modulation of tumor microenvironment; a new horizon. Front Bioeng Biotechnol 10:847433. https://doi.org/10.3389/fbioe.2022.847433.
Khursheed R, Dua K, Vishwas S et al (2022) Biomedical applications of metallic nanoparticles in cancer: current status and future perspectives. Biomed Pharmacother 150:112951. https://doi.org/10.1016/j.biopha.2022.112951. (PMID: 10.1016/j.biopha.2022.11295135447546)
Xu JJ, Zhang WC, Guo YW et al (2022) Metal nanoparticles as a promising technology in targeted cancer treatment. Drug deliv 29(1):664–678. https://doi.org/10.1080/10717544.2022.2039804. (PMID: 10.1080/10717544.2022.2039804352097868890514)
Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J 71(3):209–249. https://doi.org/10.3322/caac.21660.
Kher C, Kumar S (2022) The application of nanotechnology and nanomaterials in cancer diagnosis and treatment: a review. Cureus 14(9):e29059. https://doi.org/10.7759/cureus.29059. (PMID: 10.7759/cureus.29059362590149564559)
Alshehri S, Imam SS, Rizwanullah M (2021) Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: preclinical promise and translational challenges. Pharm 13:24. https://doi.org/10.3390/pharmaceutics13010024. (PMID: 10.3390/pharmaceutics13010024)
Joudeh N, Linke D (2022) Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol 20(1):262. https://doi.org/10.1186/s12951-022-01477-8. (PMID: 10.1186/s12951-022-01477-8)
Shameli K, Ahmad MB, Yunus WM et al (2010) Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomed 5:875–887. https://doi.org/10.2147/IJN.S13632. (PMID: 10.2147/IJN.S13632)
Tsuji M, Hashimoto M, Nishizawa Y (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry (Weinheim an der Bergstrasse, Germany) 11(2):440–452. https://doi.org/10.1002/chem.200400417. (PMID: 10.1002/chem.20040041715515072)
Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2:1821–1871. https://doi.org/10.1039/D0MA00807A. (PMID: 10.1039/D0MA00807A)
Kharissova OV, Kharisov BI, Oliva González CM (2019) Greener synthesis of chemical compounds and materials. R Soc Open Sci 6(11):191378. https://doi.org/10.1098/rsos.191378. (PMID: 10.1098/rsos.191378318278686894553)
Bahrulolum H, Nooraei S, Javanshir N et al (2021) Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnol 19:86. https://doi.org/10.1186/s12951-021-00834-3. (PMID: 10.1186/s12951-021-00834-3)
Hano C, Abbasi BH (2021) Plant-based green synthesis of nanoparticles: production, characterization and applications. Biomolecules 12(1):31. https://doi.org/10.3390/biom12010031. (PMID: 10.3390/biom12010031350531798773616)
Chaudhary R, Nawaz K, Khan AK (2020) An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 10(11):1498. https://doi.org/10.3390/biom10111498. (PMID: 10.3390/biom10111498331432897693774)
Singh J, Dutta T, Kim KH et al (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84. https://doi.org/10.1186/s12951-018-0408-4. (PMID: 10.1186/s12951-018-0408-4)
Vidyasagar PRR, Singh SK et al (2023) Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Mater Adv 4:1831–1849. https://doi.org/10.1039/D2MA01105K. (PMID: 10.1039/D2MA01105K)
Rahuman HBH, Dhandapani R, Narayanan S et al (2022) Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol 16(4):115–144. https://doi.org/10.1049/nbt2.12078. (PMID: 10.1049/nbt2.12078)
Pandit C, Roy A, Ghotekar S et al (2022) Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ Sci 34(3):101869. https://doi.org/10.1016/j.jksus.2022.101869. (PMID: 10.1016/j.jksus.2022.101869)
Barabadi H, Noqani H, Ashouri F et al (2023) Nanobiotechnological approaches in anticoagulant therapy: the role of bioengineered silver and gold nanomaterials. Talanta 256:124279. https://doi.org/10.1016/j.talanta.2023.124279. (PMID: 10.1016/j.talanta.2023.12427936709710)
Barabadi H, Mobaraki K, Ashouri F et al (2023) Nanobiotechnological approaches in antinociceptive therapy: animal-based evidence for analgesic nanotherapeutics of bioengineered silver and gold nanomaterials. Adv Colloid Interface Sci 316:102917. https://doi.org/10.1016/j.cis.2023.102917. (PMID: 10.1016/j.cis.2023.10291737150042)
Zhang Z, Liu Y, Lu M et al (2020) Rhodiola rosea extract inhibits the biofilm formation and the expression of virulence genes of cariogenic oral pathogen Streptococcus mutans. Arch Oral Biol 116:104762. https://doi.org/10.1016/j.archoralbio.2020.104762. (PMID: 10.1016/j.archoralbio.2020.10476232474211)
Paladini F, Pollini M (2019) Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials (Basel) 12(16):2540. https://doi.org/10.3390/ma12162540.
Balan K, Qing W, Wang Y et al (2016) Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv 6:40162–40168. https://doi.org/10.1039/C5RA24391B.
Ghosh R, Sarkhel S, Saha K et al (2021) Synthesis, characterization & evaluation of venom neutralization potential of silver nanoparticles mediated Alstonia scholaris Linn bark extract. Toxicol Rep 8:888–895. https://doi.org/10.1016/j.toxrep.2021. (PMID: 10.1016/j.toxrep.2021339965028091482)
Khorrami S, Dogani M, Mahani SE et al (2023) Neuroprotective activity of green synthesized silver nanoparticles against methamphetamine-induced cell death in human neuroblastoma SH-SY5Y cells. Sci Rep 13(1):11867. https://doi.org/10.1038/s41598-023-37917-0. (PMID: 10.1038/s41598-023-37917-03748158010363122)
Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/IJN.S121956. (PMID: 10.2147/IJN.S121956)
Wahab S, Khan T, Adil M et al (2021) Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon 7(7):e07448. https://doi.org/10.1016/j.heliyon.2021.e07448. (PMID: 10.1016/j.heliyon.2021.e07448342861268273360)
Singh P, Ali SW, Kale RD (2023) Antimicrobial nanomaterials as advanced coatings for self-sanitizing of textile clothing and personal protective equipment. ACS Omega 8(9):8159–8171. https://doi.org/10.1021/acsomega.2c06343. (PMID: 10.1021/acsomega.2c06343369109289996805)
Subramanian P, Nishan M (2015) Biological activities of greater galangal, Alpinia galanga—a Review. Res Rev J Bot Sci:15–19.
Imchen P, Ziekhru M, Zhimomi BK (2022) Biosynthesis of silver nanoparticles using the extract of Alpinia galanga rhizome and Rhus semialata fruit and their antibacterial activity. Inorg Chem Commun 142:109599. https://doi.org/10.1016/j.inoche.2022.109599. (PMID: 10.1016/j.inoche.2022.109599)
Wen C, Zhang J, Zhang H et al (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops–a review. Ultrason Sonochem 48:538–549. (PMID: 10.1016/j.ultsonch.2018.07.01830080583)
Canovi M, Lucchetti J, Stravalaci M et al (2012) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors (Basel, Switzerland) 12(12):16420–16432. https://doi.org/10.3390/s121216420. (PMID: 10.3390/s12121642023443386)
Cheng Z, Moore J, Yu L (2006) High-throughput relative DPPH radical scavenging capacity assay. J Agric Food Chem 54:7429–7436. https://doi.org/10.1021/jf0611668. (PMID: 10.1021/jf061166817002404)
Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1(3):1112–1116. https://doi.org/10.1038/nprot.2006.179. (PMID: 10.1038/nprot.2006.17917406391)
Krishnaraj C, Jagan EG, Rajasekar S et al (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76(1):50–56. https://doi.org/10.1016/j.colsurfb.2009.10.008. (PMID: 10.1016/j.colsurfb.2009.10.008)
Masum MMI, Siddiqa MM, Ali KA (2019) Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front microbiol 10:820. https://doi.org/10.3389/fmicb.2019.00820. (PMID: 10.3389/fmicb.2019.00820311104956501729)
Dehghanizade S, Arasteh J, Mirzaie A et al (2018) Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artif Cells Nanomed Biotechnol 46(1):160–168. https://doi.org/10.1080/21691401.2017.1304402. (PMID: 10.1080/21691401.2017.130440228368661)
Bilal M, Rasheed T, Iqbal HMN et al (2017) Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int J Biol Macromol 105(Pt 1):393–400. https://doi.org/10.1016/j.ijbiomac.2017.07.047. (PMID: 10.1016/j.ijbiomac.2017.07.04728705499)
Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3:127–150. https://doi.org/10.1007/s11468-008-9066-y. (PMID: 10.1007/s11468-008-9066-y)
Bilal M, Khan S, Ali J et al (2019) Biosynthesized silver supported catalysts for disinfection of Escherichia coli and organic pollutant from drinking water. J Mol Liq 281:295–306. https://doi.org/10.1016/j.molliq.2019.02.087. (PMID: 10.1016/j.molliq.2019.02.087)
Qais FA, Shafiq A, Khan HM et al (2019) Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg Chem and Appl. https://doi.org/10.1155/2019/4649506.
Ahmed S, Ahmad M, Swami BL et al (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28. https://doi.org/10.1016/j.jare.2015.02.007. (PMID: 10.1016/j.jare.2015.02.00726843966)
Raghunandan D, Bedre MD, Basavaraja S et al (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B 79(1):235–240. https://doi.org/10.1016/j.colsurfb.2010.04.003. (PMID: 10.1016/j.colsurfb.2010.04.003)
Praba PS, Vasantha VS, Jeyasundari J et al (2015) Synthesis of plant-mediated silver nanoparticles using Ficus microcarpa leaf extract and evaluation of their antibacterial activities. Eur Chem Bull 4(3):116–120. https://doi.org/10.17628/ECB.2015.4.117-120.
Vanlalveni C, Lallianrawna S, Biswas A et al (2021) Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv 11(5):2804–2837. https://doi.org/10.1039/d0ra09941d. (PMID: 10.1039/d0ra09941d354242488694026)
Mariadoss AVA, Ramachandran V, Shalini V et al (2019) Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb Pathog 135:103609. https://doi.org/10.1016/j.micpath.2019.103609. (PMID: 10.1016/j.micpath.2019.10360931247255)
Ahn EY, Jin H, Park Y et al (2019) Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C 101:204–216. https://doi.org/10.1016/j.msec.2019.03.095. (PMID: 10.1016/j.msec.2019.03.095)
Rani P, Kumar V, Singh PP et al (2020) Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ Int 143:105924. https://doi.org/10.1016/j.envint.2020.105924. (PMID: 10.1016/j.envint.2020.10592432659527)
Kanniah P, Balakrishnan S, Subramanian ER (2023) Preliminary investigation on the impact of engineered PVP-capped and uncapped silver nanoparticles on Eudrilus eugeniae, a terrestrial ecosystem model. Environ Sci Pollut Res Int 30(10):25239–25255. https://doi.org/10.1007/s11356-022-21898-0.
Soshnikova V, Kim YJ, Singh P et al (2018) Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artif Cells Nanomed Biotechnol 46(1):108–117. https://doi.org/10.1080/21691401.2017.1296849. (PMID: 10.1080/21691401.2017.129684928290213)
Chen L, Huo Y, Han YX et al (2020) Biosynthesis of gold and silver nanoparticles from Scutellaria baicalensis roots and in vitro applications. Appl Phy A 126:1–12. https://doi.org/10.1007/s00339-020-03603-5. (PMID: 10.1007/s00339-020-03603-5)
Yap YH, Azmi AA, Mohd NK et al (2020) Green synthesis of silver nanoparticle using water extract of onion peel and application in the acetylation reaction. Arab J Sci Eng 45:4797–4807. https://doi.org/10.1007/s13369-020-04595-3. (PMID: 10.1007/s13369-020-04595-3)
Elumalai D, Hemavathi M, Deepaa CV et al (2017) Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol Control 2(4):15–26. https://doi.org/10.1016/j.parepi.2017.09.001. (PMID: 10.1016/j.parepi.2017.09.001297742925952679)
Shanmuganathan R, Ali DM, Prabakar D et al (2018) (2018) An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res 25(11):10362–10370. https://doi.org/10.1007/s11356-017-9367-9. (PMID: 10.1007/s11356-017-9367-9)
Chandrakala V, Aruna V, Angajala G (2022) Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater 5(6):1593–1615. https://doi.org/10.1007/s42247-021-00335-x. (PMID: 10.1007/s42247-021-00335-x350054318724657)
Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33(Suppl):238–244. https://doi.org/10.1038/ng1107. (PMID: 10.1038/ng110712610533)
Reddy NJ, Nagoor VD, Rani M et al (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng C 34:115–122. https://doi.org/10.1016/j.msec.2013.08.039. (PMID: 10.1016/j.msec.2013.08.039)
Heydari R, Rashidipour M (2015) Green synthesis of silver nanoparticles using extract of oak fruit hull (jaft): synthesis and in vitro cytotoxic effect on mcf-7 cells. Int J Breast Cancer 2015:846743. https://doi.org/10.1155/2015/846743. (PMID: 10.1155/2015/846743256855604313055)
Venugopal K, Rather HA, Rajagopal K et al (2017) Synthesis of silver nanoparticles (AgNPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photochem Photobiol B Biol 167:282–289. https://doi.org/10.1016/j.jphotobiol.2016.12.013.
Dey S, Fageria L, Sharma A et al (2022) Silver nanoparticle-induced alteration of mitochondrial and ER homeostasis affects human breast cancer cell fate. Toxicol Rep 9:1977–1984. https://doi.org/10.1016/j.toxrep.2022.10.017. (PMID: 10.1016/j.toxrep.2022.10.017365184609742960)
Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013:942916. https://doi.org/10.1155/2013/942916. (PMID: 10.1155/2013/942916240277663762079)
Rinna A, Magdolenova Z, Hudecova A et al (2015) Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis 30:59–66. https://doi.org/10.1093/mutage/geu057. (PMID: 10.1093/mutage/geu05725527729)
Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8:1168–1175. https://doi.org/10.4161/cc.8.8.8147.
Eom HJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44:8337–8342. https://doi.org/10.1021/es1020668. (PMID: 10.1021/es102066820932003)
Hudecová A, Kusznierewicz B, Rundén-Pran E et al (2012) Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea. Mutagenesis 27:759–769. https://doi.org/10.1093/mutage/ges046. (PMID: 10.1093/mutage/ges04622940646)
Dakal TC, Kumar A, Majumdar RS et al (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. https://doi.org/10.3389/fmicb.2016.01831. (PMID: 10.3389/fmicb.2016.01831278999185110546)
Liu X, Shan K, Shao X et al (2021) Nanotoxic effects of silver nanoparticles on normal HEK-293 cells in comparison to cancerous HeLa cell line. Int J Nanomedicine 16:753–761. https://doi.org/10.2147/IJN.S289008. (PMID: 10.2147/IJN.S289008335689057868205)
Chou CC, Riviere JE, Monteiro-Riviere NA (2003) The cytotoxicity of jet fuel aromatic hydrocarbons and dose-related interleukin-8 release from human epidermal keratinocytes. Arch Toxicol 77(7):384–391. (PMID: 10.1007/s00204-003-0461-z12851741)
Sukirtha R, Priyanka KM, Antony JJ et al (2012) Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 47(2):273–279. https://doi.org/10.1016/j.procbio.2011.11.003. (PMID: 10.1016/j.procbio.2011.11.003)
Sriranjani R, Srinithya B, Vellingiri V et al (2016) Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J Mol Liq 220:926–930. https://doi.org/10.1016/j.molliq.2016.05.042. (PMID: 10.1016/j.molliq.2016.05.042)
Botcha S, Prattipati SD (2020) Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells. Bionanoscience 10:11–22. https://doi.org/10.1007/s12668-019-00683-3. (PMID: 10.1007/s12668-019-00683-3)
معلومات مُعتمدة: BT/INF/22/SP33063/2019 Department of Biotechnology, Ministry of Science and Technology, India; BT/INF/22/SP33063/2019 Department of Biotechnology, Ministry of Science and Technology, India; BT/INF/22/SP33063/2019 Department of Biotechnology, Ministry of Science and Technology, India; BT/INF/22/SP33063/2019 Department of Biotechnology, Ministry of Science and Technology, India; BT/INF/22/SP33063/2019 Department of Biotechnology, Ministry of Science and Technology, India
فهرسة مساهمة: Keywords: Alpinia galanga; Antioxidant; Cancer; Green synthesis; Silver nanoparticles
تواريخ الأحداث: Date Created: 20240321 Latest Revision: 20240321
رمز التحديث: 20240321
DOI: 10.1007/s00449-024-02993-7
PMID: 38509420
قاعدة البيانات: MEDLINE