دورية أكاديمية

The role of GATA family transcriptional factors in haematological malignancies: A review.

التفاصيل البيبلوغرافية
العنوان: The role of GATA family transcriptional factors in haematological malignancies: A review.
المؤلفون: Abunimye DA; Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria., Okafor IM; Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria., Okorowo H; Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria., Obeagu EI; Department of Medical Laboratory Science, KampalaInternational University, Kampala, Uganda.
المصدر: Medicine [Medicine (Baltimore)] 2024 Mar 22; Vol. 103 (12), pp. e37487.
نوع المنشور: Review; Journal Article; Retracted Publication
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 2985248R Publication Model: Print Cited Medium: Internet ISSN: 1536-5964 (Electronic) Linking ISSN: 00257974 NLM ISO Abbreviation: Medicine (Baltimore) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hagerstown, Md : Lippincott Williams & Wilkins
مواضيع طبية MeSH: GATA Transcription Factors*/genetics , GATA Transcription Factors*/metabolism , Hematologic Neoplasms*/genetics, Humans ; Gene Expression Regulation ; Cell Differentiation ; Hematopoiesis/genetics
مستخلص: GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.
Competing Interests: The authors have no funding and conflicts of interest to disclose.
(Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.)
التعليقات: Retraction in: Medicine (Baltimore). 2024 May 3;103(18):e38232. doi: 10.1097/MD.0000000000038232. (PMID: 38701322)
References: Ko LJ, Engel JD. DNA-binding specificities of the GATA transcriptional family. Mol Cell Biol. 1993;13:4011–22.
Trainor CD, Omichinski JG, Vandergon TL, et al. Paiinfromic regulatory site GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol Cell Biol. 1996;16:2238–47.
Martin DI, Orkin SH. Transcriptional activation and DMA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev. 1990;4:1886–98.
Chang AN, Cantor AB, Fujiwara Y, et al. GATA-factor dependence of the multiple zinc – finger protein rOC-1 for its essential role in megakaryopoesis. Proc Natl Acad Sci USA. 2002;99:9237–42.
Ncrlov C, Querfurth E, Kulessa H, et al. GATA-1 interacts with the myeloid PUI transcription factor and represses PUI-dependent transcription. Blood. 2000;95:2453–6.
Rylski M, Welch JJ, Chen YY, et al. GATA-1 mediated proliferation arrest during erythroid maturation. Mol Cell Biol. 2003;23:5031–42.
Tsai FY, Keller G, Kuo FC, et al. An early haematopoiec defect in mice lacking the transcription factor GATA-2. Nature. 1994;371:221–6.
Bresnick EH, Lee HY, Fujiwara T, et al. GATA switches as developmental drivers. J Biol Chem. 2010;285:31087–93.
Van Escli H, Groenen P, Nesbit MA, et al. GATA 3 haplo-insufficiency causes human HDR syndrome. Nature. 2000;406:419–22.
Frelin C, Herrington R, Janmonhamed S, et al. GATA-3 is regulate the self-renewal of long term hematopoietic stem cells. Nat Immunol. 2013;14:1037–44.
Wechsler J, Greene M, McDevitt MA, et al. Acquired mutations in GATA in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32:148–52.
Mundschau G, Gurbuxani S, Gamis AS, et al. Mutagenesis of GATA-1 is an initiating event in Down syndrome leukemogenesis. Blood. 2003;101:4298–300.
ShimizLi R, Engel JD, Yamamoto M. GATA 1-related leukaemias. Nature Rev Cancer. 2008;8:279–87.
Alford KA, Reinhardt K, Garnett C, et al.; International Myeloid Leukemia-Down Syndrome Study Group. Analysis of GATA 1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. Blood. 2011;118:2222–38.
Freson K, Devriendt K, Matthijs G, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA 1 mutation. Blood. 2001;98:85–92.
Fox AH, Liew C, Holmes M, et al. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 1999;18:2812–22.
Liplon JM, Ellis SR. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am. 2009;23:261–82.
Sankaran VG, Ghazvinian R, Do R, et al. Exome sequencing identifies GATA 1 mutations resulting in diamond blackfan anaemia. J Clin Investig. 2012;122:2439–43.
Klar J, Khalfallah A, Arzoo PS, et al. Recurrent GATA 1 mutations in Diamond-Blackfan anaemia. Br J Haematol. 2014;166:949–51.
Luclwig LS, Gazdda FT, Eng JC, et al. Altered translation of GATA-1 in Diamond-Blackfan anaemia. Nat Med. 2014;20:748–53.
Grossman J, Cuellar-Roddriguez J, Gea-Baancloche J, et al. Nonmyeloablative allogenetic hematopoietic stem-cell transplantation for GATA 2 deficiency. Biol Blood Marrow Transplant. 2014;20:1940–8.
Holme H, Hossian U, Kirwan M, et al. Marked genetic heterogeneity in familial myelodysplasia/acute myeloid leukemia. Br J Haematol. 2012;158:242–8.
Celton M, Forest A, Gosse G, et al. Epigenic regulation of GATA 2 and its impact on normal karyotype acute myeloid leukemia. Leukemia. 2014;28:1617–26.
Challen GA, Sun D, Jeong M, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 2012;44:23–31.
Gutierrez SE, Romero-Oliva FA. Epigenetic changes: a common theme in acute myelogenous leukemogenesis. J Hematol Oncol. 2013;6:57.
Hosoya T, Kuroha T, Moriguchi T, et al. GATA-3 is required for early T lineage progenitor development. J Exp Med. 2009;206:2987–3000.
Zahirieh A, Nesbit MA, Ali A, et al. Functional acquired mutations in GATA 1 in the magakaryoblastic leukemia of down syndrome. J Clin Endocrinol Metabolism 2005;90:2445–50.
Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2013;123:2915–23.
Hellebrekers DM, Lentjes MH, van den Bosch SM, et al. GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res. 2009;15:3990–7.
Chmelarova M, Kos S, Dvorakova E, et al. Importance of promoter methylation of GATA4 and TP53 genes in endometrioid carcinoma of endometrium. Clin Chem Lab Med. 2014;52:1229–34.
Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.
Song SH, Jeon MS, Nam JW, et al. Aberrant GATA2 epigenetic dysregulation induces a GATA2/GATA6 switch in human gastric cancer. Oncogene. 2018;37:993–1004.
Kamnasaran D, Qian B, Hawkins C, et al. GATA6 is an astrocytoma tumor suppressor gene identified by gene trapping of mouse glioma model. Proc Natl Acad Sci USA. 2007;104:8053–8.
Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression. Mol Cancer Res. 2009;7:1893–901.
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development. 2018;145:dev164384.
Crispino JD, Horwitz MS. GATA factor mutations in hematologic disease. Blood. 2017;129:2103–10.
Wlodarski MW, Collin M, Horwitz MS. GATA2 deficiency and related myeloid neoplasms. Semin Hematol. 2017;54:81–6.
Bates DL, Chen Y, Kim G, et al. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J Mol Biol. 2008;381:1292–306.
Kotaka M, Johnson C, Lamb HK, et al. Structural analysis of the recognition of the negative regulator NmrA and DNA by the zinc finger from the GATA-type transcription factor AreA. J Mol Biol. 2008;381:373–82.
Hosoya T, Maillard I, Engel JD. From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev. 2010;238:110–25.
Zhong C, Zheng M, Cui K, et al. Differential expression of the transcription factor GATA3 specifies lineage and functions of innate lymphoid cells. Immunity. 2020;52:83–95.e4.
Pal S, Cantor AB, Johnson KD, et al. Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc Natl Acad Sci USA. 2004;101:980–5.
المشرفين على المادة: 0 (GATA Transcription Factors)
تواريخ الأحداث: Date Created: 20240322 Date Completed: 20240325 Latest Revision: 20240610
رمز التحديث: 20240610
مُعرف محوري في PubMed: PMC10956995
DOI: 10.1097/MD.0000000000037487
PMID: 38518015
قاعدة البيانات: MEDLINE
الوصف
تدمد:1536-5964
DOI:10.1097/MD.0000000000037487