دورية أكاديمية

Structural characterization of a novel polysaccharide from Tremella fuciformis and its interaction with gut microbiota.

التفاصيل البيبلوغرافية
العنوان: Structural characterization of a novel polysaccharide from Tremella fuciformis and its interaction with gut microbiota.
المؤلفون: Song H; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China., Lu J; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China., Chu Q; Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China., Deng R; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China., Shen X; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
المصدر: Journal of the science of food and agriculture [J Sci Food Agric] 2024 Aug 30; Vol. 104 (11), pp. 6553-6562. Date of Electronic Publication: 2024 Apr 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: England NLM ID: 0376334 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0010 (Electronic) Linking ISSN: 00225142 NLM ISO Abbreviation: J Sci Food Agric Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005-> : Chichester, West Sussex : John Wiley & Sons
Original Publication: London, Society of Chemical Industry.
مواضيع طبية MeSH: Gastrointestinal Microbiome* , Basidiomycota*/chemistry , Basidiomycota*/metabolism , Feces*/microbiology , Polysaccharides*/chemistry , Polysaccharides*/metabolism, Humans ; Molecular Weight ; Bacteria/classification ; Bacteria/metabolism ; Bacteria/genetics ; Fatty Acids, Volatile/metabolism ; Fatty Acids, Volatile/chemistry ; Fermentation ; Bacteroidetes/metabolism ; Bacteroidetes/chemistry ; Firmicutes/metabolism
مستخلص: Background: Because of their diverse biological activities, polysaccharides derived from Tremella fuciformis have received growing attention. This study aimed to investigate the structural characterization of a purified polysaccharide (designated as PTP-3a) derived from T. fuciformis and explore its interaction with gut microbiota in vitro.
Results: The findings revealed that PTP-3a had a molecular weight of 1.22 × 10 3  kDa and consisted of fucose, glucose, xylose, mannose and glucuronic acid in a molar ratio of 0.271:0.016:0.275:0.400:0.038. The primary linkage types identified in PTP-3a were 1,3-linked-manp, 1,4-linked-xylp and 1,2,3-linked-fucp, with corresponding ratios of 0.215:0.161:0.15. In addition, PTP-3a demonstrated notable thermal stability and exhibited a triple-helical structure. Moreover, following in vitro fermentation for 48 h, PTP-3a was efficiently utilized, resulting in a reduction in carbohydrate levels, the production of short-chain fatty acids (SCFAs) and pH adjustment. Furthermore, during in vitro fecal microbial fermentation, PTP-3a decreased the relative abundance of Firmicutes while increasing the proportions of Bacteroidetes and Proteobacteria, resulting in a significantly reduced Firmicutes/Bacteroidetes ratio. Additionally, PTP-3a stimulated the growth of beneficial bacteria such as Parabacteroides merdae, Gordonibacter pamelaeae, Bifidobacterium pseudolongum and Parabacteroides distasonis. Importantly, a strong correlation was observed between the production of SCFAs and specific microorganisms.
Conclusion: These findings suggested that PTP-3a has potential as a prebiotic for modulating the gut microbiota. © 2024 Society of Chemical Industry.
(© 2024 Society of Chemical Industry.)
References: Huang L, Shen M, Morris GA and Xie J, Sulfated polysaccharides: immunomodulation and signaling mechanisms. Trends Food Sci Tech 92:1–11 (2019).
Ji X, Peng B, Ding H, Cui B, Nie H and Yan Y, Purification, structure and biological activity of pumpkin polysaccharides: a review. Food Rev Int 39:307–319 (2023).
Mohammed ASA, Naveed M and Jost N, Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J Polym Environ 29:2359–2371 (2021).
Huang S, Chen F, Cheng H and Huang G, Modification and application of polysaccharide from traditional Chinese medicine such as Dendrobium officinale. Int J Biol Macromol 157:385–393 (2020).
Ji X, Cheng Y, Tian J, Zhang S, Jing Y and Shi M, Structural characterization of polysaccharide from jujube (Ziziphus jujuba mill.) fruit. Chem Biol Technol Agric 8:54 (2021).
Abdessamad EK, Fabrice A, Gordon Jeffrey I, Didier R and Bernard H, The abundance and variety of carbohydrate‐active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497–504 (2013).
Johan L, Rogers Theresa E, Hemsworth Glyn R, McKee LS, Tauzin AS, Spadiut O et al., A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506:498–502 (2014).
Koh A, Vadder FD, Kovatcheva‐Datchary P and Bäckhed F, From dietary fiber to host physiology: short‐chain fatty acids as key bacterial metabolites. Cell 165:1332–1345 (2016).
Mamiko K, Daisuke M, Junsuke U, Takashi Y, Kazuko K, Hideki K et al., A short‐chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells. Oncotarget 9:31342–31354 (2018).
Xu S, Dou Y, Ye B, Wu Q, Wang Y, Hu M et al., Ganoderma lucidum polysaccharides improve insulin sensitivity by regulating inflammatory cytokines and gut microbiota composition in mice. J Funct Foods 38:545–552 (2017).
Dandan Y, Yong L and Lijuan Z, Tremella polysaccharide: the molecular mechanisms of its drug action. Prog Mol Biol Transl Sci 163:383–421 (2019).
Yang F, Du Q, Miao T, Zhang X, Xu W and Jia D, Interaction between potato starch and tremella fuciformis polysaccharide. Food Hydrocoll 127:107509 (2022).
Hou F, Yang S, Ma X, Gong Z, Wang Y and Wang W, Characterization of physicochemical properties of oil‐in‐water emulsions stabilized by tremella fuciformis polysaccharides. Foods 11:3020 (2022).
Dubois M, Gilles KA, Hamilton JK, Rebers PA and Smith F, Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 (1956).
Kielkopf CL, Bauer W and Urbatsch IL, Bradford assay for determining protein concentration. Cold Spring Harb Protoc 2020:102269 (2020).
Kupina S, Fields C, Roman MC and Brunelle SL, Determination of total phenolic content using the folin‐C assay: single‐laboratory validation, first action 2017.13. J AOAC Int 101:1466–1472 (2019).
Wood IP, Elliston A, Ryden P, Bancroft I, Roberts IN and Waldron KW, Rapid quantification of reducing sugars in biomass hydrolysates: improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 44:117–121 (2012).
Yang L and Zhang L‐M, Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr Polym 76:349–361 (2009).
Lee Q, Han X, Zheng M, Lv F, Liu B and Zeng F, Preparation of low molecular weight polysaccharides from tremella fuciformis by ultrasonic‐assisted H2O2‐Vc method: structural characteristics, in vivo antioxidant activity and stress resistance. Ultrason Sonochem 99:106555 (2023).
Wen L, Gao Q, Ma C‐w, Ge Y, You L, Liu RH et al., Effect of polysaccharides from tremella fuciformis on UV‐induced photoaging. J Funct Foods 20:400–410 (2016).
Ge X, Huang W, Xu X, Lei P, Sun D, Xu H et al., Production, structure, and bioactivity of polysaccharide isolated from tremella fuciformis XY. Int J Biol Macromol 148:173–181 (2020).
Chen Y, Wang T, Zhang X, Zhang F and Linhardt RJ, Structural and immunological studies on the polysaccharide from spores of a medicinal entomogenous fungus Paecilomyces cicadae. Carbohydr Polym 254:117462 (2021).
Li N, Mao W, Yan M, Liu X, Xia Z, Wang S et al., Structural characterization and anticoagulant activity of a sulfated polysaccharide from the green alga Codium divaricatum. Carbohydr Polym 121:175–182 (2015).
Hojjati M, Noshad M, Sorourian R, Askari H and Feghhi S, Effect of gamma irradiation on structure, physicochemical and functional properties of bitter vetch (Vicia ervilia) seeds polysaccharides. Radiat Phys Chem 202:110569 (2023).
Xu X, Chen A, Ge X, Li S, Zhang T and Xu H, Chain conformation and physicochemical properties of polysaccharide (glucuronoxylomannan) from fruit bodies of tremella fuciformis. Carbohydr Polym 245:116354 (2020).
Gan T, Feng C, Lan H, Yang R, Zhang J, Li C et al., Comparison of the structure and immunomodulatory activity of polysaccharides from fresh and dried longan. J Funct Foods 76:104323 (2021).
Guo X, Kang J, Xu Z, Zhang L, Ning H and Cui S, Triple‐helix polysaccharides: formation mechanisms and analytical methods. Carbohydr Polym 262:117962 (2021).
Wu D‐T, Nie X‐R, Gan R‐Y, Guo H, Fu Y, Yuan Q et al., In vitro digestion and fecal fermentation behaviors of a pectic polysaccharide from okra (Abelmoschus esculentus) and its impacts on human gut microbiota. Food Hydrocoll 114:106577 (2021).
Liu Y, Li Y, Ke Y, Li C, Zhang Z, Wu Y et al., In vitro saliva‐gastrointestinal digestion and fecal fermentation of Oudemansiella radicata polysaccharides reveal its digestion profile and effect on the modulation of the gut microbiota. Carbohydr Polym 251:117041 (2021).
Zhang X, Aweya JJ, Huang Z‐X, Kang Z‐Y, Bai Z‐H, Li K‐H et al., In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro‐oligosaccharides by human fecal inocula and its impact on microbiota. Carbohydr Polym 234:115894 (2020).
Hu T, Wu Q, Yao Q, Jiang K, Yu J and Tang Q, Short‐chain fatty acid metabolism and multiple effects on cardiovascular diseases. Ageing Res Rev 81:101706 (2022).
Frost G, Sleeth ML, Sahuri‐Arisoylu M, Lizarbe B, Cerdan S, Brody L et al., The short‐chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611 (2014).
Louis P, Hold GL and Flint HJ, The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672 (2014).
Bourassa MW, Alim I, Bultman SJ and Ratan RR, Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett 625:56–63 (2016).
de Vos WM, Tilg H, Van Hul M and Cani PD, Gut microbiome and health: mechanistic insights. Gut 71:1020–1032 (2022).
Xu Y, Xie L, Zhang Z, Zhang W, Tang J, He X et al., Tremella fuciformis polysaccharides inhibited colonic inflammation in dextran sulfate sodium‐treated mice via Foxp3+ T cells, gut microbiota, and bacterial metabolites. Front Immunol 12:648162 (2021).
Angelakis E, Armougom F, Million M and Raoult D, The relationship between gut microbiota and weight gain in humans. Future Microbiol 7:91–109 (2012).
Flint HJ, Scott KP, Duncan SH, Louis P and Forano E, Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306 (2012).
Tan Y, Li M, Kong K, Xie Y, Zeng Z, Fang Z et al., In vitro simulated digestion of and microbial characteristics in colonic fermentation of polysaccharides from four varieties of Tibetan tea. Food Res Int 163:112255 (2023).
معلومات مُعتمدة: 32072221 National Natural Science Foundation of China; 32272318 National Natural Science Foundation of China; 31701031 National Natural Science Foundation of China; BK20211292 Natural Science Foundation of Jiangsu Province
فهرسة مساهمة: Keywords: Tremella fuciformis; fermentation; gut microbiota; polysaccharides; short‐chain fatty acids; structural characterization
المشرفين على المادة: 0 (Polysaccharides)
0 (Fatty Acids, Volatile)
SCR Organism: Tremella fuciformis
تواريخ الأحداث: Date Created: 20240323 Date Completed: 20240713 Latest Revision: 20240713
رمز التحديث: 20240713
DOI: 10.1002/jsfa.13479
PMID: 38520258
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0010
DOI:10.1002/jsfa.13479