دورية أكاديمية

Maternal Ezh1/2 deficiency impairs the function of mitochondria in mouse oocytes and early embryos.

التفاصيل البيبلوغرافية
العنوان: Maternal Ezh1/2 deficiency impairs the function of mitochondria in mouse oocytes and early embryos.
المؤلفون: Zhang D; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China., Deng W; Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China., Jiang T; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China., Zhao Y; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China., Bai D; Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China., Tian Y; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China., Kong S; Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China., Zhang L; Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China., Wang H; Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China., Gao S; Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China., Lu Z; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, China.; Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
المصدر: Journal of cellular physiology [J Cell Physiol] 2024 Jun; Vol. 239 (6), pp. e31244. Date of Electronic Publication: 2024 Mar 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
مواضيع طبية MeSH: Mitochondria*/metabolism , Mitochondria*/pathology , Mitochondria*/genetics , Oocytes*/metabolism , Polycomb Repressive Complex 2*/metabolism , Polycomb Repressive Complex 2*/genetics, Animals ; Female ; Mice ; Apoptosis/genetics ; Autophagy/genetics ; Blastocyst/metabolism ; Embryonic Development/genetics ; Enhancer of Zeste Homolog 2 Protein/metabolism ; Enhancer of Zeste Homolog 2 Protein/genetics ; Enhancer of Zeste Homolog 2 Protein/deficiency ; Epigenesis, Genetic ; Gene Expression Regulation, Developmental ; Membrane Potential, Mitochondrial ; Mice, Knockout ; Morula/metabolism ; Oxidative Stress/genetics ; Reactive Oxygen Species/metabolism ; Histones/metabolism
مستخلص: Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.
(© 2024 Wiley Periodicals LLC.)
References: Abate, M., Festa, A., Falco, M., Lombardi, A., Luce, A., Grimaldi, A., Zappavigna, S., Sperlongano, P., Irace, C., Caraglia, M., & Misso, G. (2020). Mitochondria as playmakers of apoptosis, autophagy and senescence. Seminars in Cell and Developmental Biology, 98, 139–153.
Adhikari, D., Lee, I. W., Al‐Zubaidi, U., Liu, J., Zhang, Q. H., Yuen, W. S., He, L., Winstanley, Y., Sesaki, H., Mann, J. R., Robker, R. L., & Carroll, J. (2022). Depletion of oocyte dynamin‐related protein 1 shows maternal‐effect abnormalities in embryonic development. Science Advances, 8(24):eabl8070.
Agarwal, A., Gupta, S., & Sharma, R. K. (2005). Role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology, 3, 28.
Baker, II, P. R., & Friedman, J. E. (2018). Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. The Journal of Clinical Investigation, 128(9), 3692–3703.
Baumann, K. (2016). Eliminating paternal mitochondria. Nature Reviews Molecular Cell Biology, 17(8), 464.
Cai, Q., Wen, K., Ma, M., Chen, W., Mo, D., He, Z., Chen, Y., & Cong, P. (2021). EZH2 is essential for spindle assembly regulation and chromosomal integrity during porcine oocyte meiotic maturation†. Biology of Reproduction, 104(3), 562–577.
Chen, Z., Djekidel, M. N., & Zhang, Y. (2021). Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos. Nature Genetics, 53(4), 551–563.
de Vries, N. A., Hulsman, D., Akhtar, W., de Jong, J., Miles, D. C., Blom, M., van Tellingen, O., Jonkers, J., & van Lohuizen, M. (2015). Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression. Cell Reports, 10(3), 383–397.
Duan, R., Du, W., & Guo, W. (2020). EZH2: A novel target for cancer treatment. Journal of Hematology & Oncology, 13(1), 104.
Erhardt, S., Su, I., Schneider, R., Barton, S., Bannister, A. J., Perez‐Burgos, L., Jenuwein, T., Kouzarides, T., Tarakhovsky, A., & Surani, M. A. (2003). Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development, 130(18), 4235–4248.
Ezhkova, E., Lien, W. H., Stokes, N., Pasolli, H. A., Silva, J. M., & Fuchs, E. (2011). EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes & Development, 25(5), 485–498.
Fan, X., Hussien, R., & Brooks, G. A. (2010). H2O2‐induced mitochondrial fragmentation in C2C12 myocytes. Free Radical Biology and Medicine, 49(11), 1646–1654.
Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., Barker, M., Saffery, R., Yajnik, C. S., Eckert, J. J., Hanson, M. A., Forrester, T., Gluckman, P. D., & Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842–1852.
Fu, H., Sun, J., & Xu, X. (2022). The mitochondrial tRNAAsp T7561C, tRNAHis C12153T and A12172G mutations may be associated with essential hypertension in a Han Chinese pedigree. Human Heredity, 87(2), 51–59.
Giacomello, M., Pyakurel, A., Glytsou, C., & Scorrano, L. (2020). The cell biology of mitochondrial membrane dynamics. Nature Reviews Molecular Cell Biology, 21(4), 204–224.
Godfrey, K. M., Reynolds, R. M., Prescott, S. L., Nyirenda, M., Jaddoe, V. W. V., Eriksson, J. G., & Broekman, B. F. P. (2017). Influence of maternal obesity on the long‐term health of offspring. The Lancet Diabetes & Endocrinology, 5(1), 53–64.
Goldenthal, M. J., & Marín‐García, J. (2004). Mitochondrial signaling pathways: a receiver/integrator organelle. Molecular and Cellular Biochemistry, 262(1–2), 1–16.
Green, D. R., & Levine, B. (2014). To be or not to be? How selective autophagy and cell death govern cell fate. Cell, 157(1), 65–75.
Guo, S. M., Liu, X. P., Tian, Q., Fei, C. F., Zhang, Y. R., Li, Z. M., Yin, Y., He, X., & Zhou, L. Q. (2022). Regulatory roles of alternative splicing at Ezh2 gene in mouse oocytes. Reproductive Biology and Endocrinology, 20(1), 99.
Harvey, A. J. (2019). Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction, 157(5), R159–R179.
Hillman, S., Peebles, D. M., & Williams, D. J. (2013). Paternal metabolic and cardiovascular risk factors for fetal growth restriction: A case‐control study. Diabetes Care, 36(6), 1675–1680.
Højfeldt, J. W., Laugesen, A., Willumsen, B. M., Damhofer, H., Hedehus, L., Tvardovskiy, A., Mohammad, F., Jensen, O. N., & Helin, K. (2018). Accurate H3K27 methylation can be established de novo by SUZ12‐directed PRC2. Nature Structural & Molecular Biology, 25(3), 225–232.
Holt, I. J., Harding, A. E., & Morgan‐Hughes, J. A. (1988). Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 331(6158), 717–719.
Hu, M. W., Wang, Z. B., Schatten, H., & Sun, Q. Y. (2012). New understandings on folliculogenesis/oogenesis regulation in mouse as revealed by conditional knockout. Journal of Genetics and Genomics, 39(2), 61–68.
Inoue, A., Jiang, L., Lu, F., Suzuki, T., & Zhang, Y. (2017). Maternal H3K27me3 controls DNA methylation‐independent imprinting. Nature, 547(7664), 419–424.
Jambhekar, A., Dhall, A., & Shi, Y. (2019). Roles and regulation of histone methylation in animal development. Nature Reviews Molecular Cell Biology, 20(10), 625–641.
Kusuyama, J., Alves‐Wagner, A. B., Makarewicz, N. S., & Goodyear, L. J. (2020). Effects of maternal and paternal exercise on offspring metabolism. Nature Metabolism, 2(9), 858–872.
Lane, M., & Gardner, D. K. (2000). Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Biology of Reproduction, 62(1), 16–22.
Lecorguillé, M., Schipper, M., O'Donnell, A., Aubert, A. M., Tafflet, M., Gassama, M., Douglass, A., Hébert, J. R., Kelleher, C., Charles, M. A., Phillips, C. M., Gaillard, R., Lioret, S., & Heude, B. (2023). Parental lifestyle patterns around pregnancy and risk of childhood obesity in four European birth cohort studies. The Lancet Global Health, 11(1), S5.
Lee, C. H., Holder, M., Grau, D., Saldaña‐Meyer, R., Yu, J. R., Ganai, R. A., Zhang, J., Wang, M., LeRoy, G., Dobenecker, M. W., Reinberg, D., & Armache, K. J. (2018). Distinct stimulatory mechanisms regulate the catalytic activity of polycomb repressive complex 2. Molecular Cell, 70(3), 435–448.e5.
Leese, H. J. (2012). Metabolism of the preimplantation embryo: 40 years on. Reproduction, 143(4), 417–427.
Liu, K. (2006). Stem cell factor (SCF)‐kit mediated phosphatidylinositol 3 (PI3) kinase signaling during mammalian oocyte growth and early follicular development. Frontiers in Bioscience, 11, 126–135.
Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., Zhang, Y., Gao, Y., & Gao, S. (2016). Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre‐implantation embryos. Nature, 537(7621), 558–562.
Liu, Y., Chen, C., Wang, X., Sun, Y., Zhang, J., Chen, J., & Shi, Y. (2022). An epigenetic role of mitochondria in cancer. Cells, 11(16), 2518.
Matilainen, O., Quirós, P. M., & Auwerx, J. (2017). Mitochondria and epigenetics—crosstalk in homeostasis and stress. Trends in Cell Biology, 27(6), 453–463.
McGrath, S. A., Esquela, A. F., & Lee, S. J. (1995). Oocyte‐specific expression of growth/differentiation factor‐9. Molecular Endocrinology, 9(1), 131–136.
Miwa, S., Kashyap, S., Chini, E., & von Zglinicki, T. (2022). Mitochondrial dysfunction in cell senescence and aging. Journal of Clinical Investigation, 132(13):e158447.
Muchira, J. M., Gona, P. N., Mogos, M. F., Stuart‐Shor, E., Leveille, S. G., Piano, M. R., & Hayman, L. L. (2022). Parental cardiovascular health predicts time to onset of cardiovascular disease in offspring. European Journal of Preventive Cardiology, 29(6), 883–891.
Muliyil, S., & Narasimha, M. (2014). Mitochondrial ROS regulates cytoskeletal and mitochondrial remodeling to tune cell and tissue dynamics in a model for wound healing. Developmental Cell, 28(3), 239–252.
Nagaraj, R., Sharpley, M. S., Chi, F., Braas, D., Zhou, Y., Kim, R., Clark, A. T., & Banerjee, U. (2017). Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in mammalian zygotic genome activation. Cell, 168(1–2), 210–223.e11.
Niemann, A., Huber, N., Wagner, K. M., Somandin, C., Horn, M., Lebrun‐Julien, F., Angst, B., Pereira, J. A., Halfter, H., Welzl, H., Feltri, M. L., Wrabetz, L., Young, P., Wessig, C., Toyka, K. V., & Suter, U. (2014). The Gdap1 knockout mouse mechanistically links redox control to Charcot‐Marie‐Tooth disease. Brain: A Journal of Neurology, 137(Pt 3), 668–682.
Özeş, A. R., Pulliam, N., Ertosun, M. G., Yılmaz, Ö., Tang, J., Çopuroğlu, E., Matei, D., Özeş, O. N., & Nephew, K. P. (2018). Protein kinase A‐mediated phosphorylation regulates STAT3 activation and oncogenic EZH2 activity. Oncogene, 37(26), 3589–3600.
Perfettini, J. L., Roumier, T., & Kroemer, G. (2005). Mitochondrial fusion and fission in the control of apoptosis. Trends in Cell Biology, 15(4), 179–183.
Podrini, C., Koffas, A., Chokshi, S., Vinciguerra, M., Lelliott, C. J., White, J. K., Adissu, H. A., Williams, R., & Greco, A. (2015). MacroH2A1 isoforms are associated with epigenetic markers for activation of lipogenic genes in fat‐induced steatosis. The FASEB Journal, 29(5), 1676–1687.
Prasad, S., Tiwari, M., Pandey, A. N., Shrivastav, T. G., & Chaube, S. K. (2016). Impact of stress on oocyte quality and reproductive outcome. Journal of Biomedical Science, 23, 36.
Ruegsegger, G. N., Creo, A. L., Cortes, T. M., Dasari, S., & Nair, K. S. (2018). Altered mitochondrial function in insulin‐deficient and insulin‐resistant states. The Journal of Clinical Investigation, 128(9), 3671–3681.
Scheibye‐Knudsen, M., Fang, E. F., Croteau, D. L., Wilson, 3rd, D. M., & Bohr, V. A. (2015). Protecting the mitochondrial powerhouse. Trends in Cell Biology, 25(3), 158–170.
Scherz‐Shouval, R., & Elazar, Z. (2007). ROS, mitochondria and the regulation of autophagy. Trends in Cell Biology, 17(9), 422–427.
Sharma, N., Pasala, M. S., & Prakash, A. (2019). Mitochondrial DNA: Epigenetics and environment. Environmental and Molecular Mutagenesis, 60(8), 668–682.
Shen, X., Liu, Y., Hsu, Y. J., Fujiwara, Y., Kim, J., Mao, X., Yuan, G. C., & Orkin, S. H. (2008). EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Molecular Cell, 32(4), 491–502.
Shu, L., Hu, C., Xu, M., Yu, J., He, H., Lin, J., Sha, H., Lu, B., Engelender, S., Guan, M., & Song, Z. (2021). ATAD3B is a mitophagy receptor mediating clearance of oxidative stress‐induced damaged mitochondrial DNA. The EMBO Journal, 40(8), e106283.
Sieber, M. H., Thomsen, M. B., & Spradling, A. C. (2016). Electron transport chain remodeling by GSK3 during oogenesis connects nutrient state to reproduction. Cell, 164(3), 420–432.
Stewart, J. B., & Chinnery, P. F. (2015). The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nature Reviews Genetics, 16(9), 530–542.
Sun, Q. Y., Liu, K., & Kikuchi, K. (2008). Oocyte‐specific knockout: a novel in vivo approach for studying gene functions during folliculogenesis, oocyte maturation, fertilization, and embryogenesis. Biology of Reproduction, 79(6), 1014–1020.
Tsukamoto, S., Kuma, A., & Mizushima, N. (2008). The role of autophagy during the oocyte‐to‐embryo transition. Autophagy, 4(8), 1076–1078.
Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A., & Mizushima, N. (2008). Autophagy is essential for preimplantation development of mouse embryos. Science, 321(5885), 117–120.
Van Blerkom, J. (2011). Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion, 11(5), 797–813.
Wallace, D. C., Singh, G., Lott, M. T., Hodge, J. A., Schurr, T. G., Lezza, A. M. S., Elsas, L. J., & Nikoskelainen, E. K. (1988). Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science, 242(4884), 1427–1430.
Xie, H. L., Wang, Y. B., Jiao, G. Z., Kong, D. L., Li, Q., Li, H., Zheng, L. L., & Tan, J. H. (2016). Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes. Scientific Reports, 6, 20764.
Xu, R., Hong, X., Zhang, B., Huang, W., Hou, W., Wang, G., Wang, X., Igusa, T., Liang, L., & Ji, H. (2021). DNA methylation mediates the effect of maternal smoking on offspring birthweight: a birth cohort study of multi‐ethnic US mother‐newborn pairs. Clinical Epigenetics, 13(1), 47.
Xu, R., Li, C., Liu, X., & Gao, S. (2021). Insights into epigenetic patterns in mammalian early embryos. Protein & Cell, 12(1), 7–28.
Yu, J. R., Lee, C. H., Oksuz, O., Stafford, J. M., & Reinberg, D. (2019). PRC2 is high maintenance. Genes & Development, 33(15–16), 903–935.
Zenk, F., Loeser, E., Schiavo, R., Kilpert, F., Bogdanović, O., & Iovino, N. (2017). Germ line‐inherited H3K27me3 restricts enhancer function during maternal‐to‐zygotic transition. Science, 357(6347), 212–216.
Zhao, J., Yao, K., Yu, H., Zhang, L., Xu, Y., Chen, L., Sun, Z., Zhu, Y., Zhang, C., Qian, Y., Ji, S., Pan, H., Zhang, M., Chen, J., Correia, C., Weiskittel, T., Lin, D. W., Zhao, Y., Chandrasekaran, S., … Zhang, J. (2021). Metabolic remodelling during early mouse embryo development. Nature Metabolism, 3(10), 1372–1384.
Zhao, Y., Bai, D., Wu, Y., Zhang, D., Liu, M., Tian, Y., Lu, J., Wang, H., Gao, S., & Lu, Z. (2022). Maternal Ezh1/2 deficiency in oocyte delays H3K27me2/3 restoration and impairs epiblast development responsible for embryonic sub‐lethality in mouse. Development, 149(15):dev200316.
Zheng, H., Huang, B., Zhang, B., Xiang, Y., Du, Z., Xu, Q., Li, Y., Wang, Q., Ma, J., Peng, X., Xu, F., & Xie, W. (2016). Resetting epigenetic memory by reprogramming of histone modifications in mammals. Molecular Cell, 63(6), 1066–1079.
Zhou, L., Wei, E., Zhou, B., Bi, G., Gao, L., Zhang, T., Huang, J., Wei, Y., & Ge, B. (2018). Anti‐proliferative benefit of curcumol on human bladder cancer cells via inactivating EZH2 effector. Biomedicine & Pharmacotherapy, 104, 798–805.
معلومات مُعتمدة: National Key Research and Development Program of China; National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Ezh1; Ezh2; embryonic development
المشرفين على المادة: EC 2.1.1.43 (Enhancer of Zeste Homolog 2 Protein)
EC 2.1.1.43 (Ezh1 protein, mouse)
EC 2.1.1.43 (Ezh2 protein, mouse)
EC 2.1.1.43 (Polycomb Repressive Complex 2)
0 (Reactive Oxygen Species)
0 (Histones)
تواريخ الأحداث: Date Created: 20240326 Date Completed: 20240613 Latest Revision: 20240618
رمز التحديث: 20240618
DOI: 10.1002/jcp.31244
PMID: 38529784
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4652
DOI:10.1002/jcp.31244