دورية أكاديمية

Novel method of measurement of in vitro drug uptake in OATP1B3 overexpressing cells in the presence of dextran.

التفاصيل البيبلوغرافية
العنوان: Novel method of measurement of in vitro drug uptake in OATP1B3 overexpressing cells in the presence of dextran.
المؤلفون: Kowal-Chwast A; Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland. anna.kowal-chwast@ryvu.com.; Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland. anna.kowal-chwast@ryvu.com., Gabor-Worwa E; Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland.; Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland., Gaud N; Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland., Gogola D; Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland., Piątek A; Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland., Zarębski A; Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland., Littlewood P; Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland., Smoluch M; Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland., Brzózka K; Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland., Kuś K; Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland.
المصدر: Pharmacological reports : PR [Pharmacol Rep] 2024 Apr; Vol. 76 (2), pp. 400-415. Date of Electronic Publication: 2024 Mar 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer International Publishing Country of Publication: Switzerland NLM ID: 101234999 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2299-5684 (Electronic) Linking ISSN: 17341140 NLM ISO Abbreviation: Pharmacol Rep Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : Cham, Switzerland : Springer International Publishing
Original Publication: Kraków, Poland : Institute of Pharmacology, Polish Academy of Sciences, c2005-
مواضيع طبية MeSH: Dextrans* , Organic Anion Transporters*/genetics , Organic Anion Transporters*/metabolism, Humans ; Solute Carrier Organic Anion Transporter Family Member 1B3/genetics ; Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism ; Solute Carrier Organic Anion Transporter Family Member 1B3/pharmacology ; Liver-Specific Organic Anion Transporter 1/genetics ; Liver-Specific Organic Anion Transporter 1/metabolism ; Liver-Specific Organic Anion Transporter 1/pharmacology ; HEK293 Cells ; Hepatocytes/metabolism ; Liver ; Membrane Transport Proteins/metabolism ; Albumins ; Organic Anion Transporters, Sodium-Independent/genetics ; Organic Anion Transporters, Sodium-Independent/metabolism
مستخلص: Background: In predictions about hepatic clearance (CL H ), a number of studies explored the role of albumin and transporters in drug uptake by liver cells, challenging the traditional free-drug theory. It was proposed that liver uptake can occur for transporter substrate compounds not only from the drug's unbound form but also directly from the drug-albumin complex, a phenomenon known as uptake facilitated by albumin. In contrast to albumin, dextran does not exhibit binding properties for compounds. However, as a result of its inherent capacity for stabilization, it is widely used to mimic conditions within cells.
Methods: The uptake of eight known substrates of the organic anion-transporting polypeptide 1B3 (OATP1B3) was assessed using a human embryonic kidney cell line (HEK293), which stably overexpresses this transporter. An inert polymer, dextran, was used to simulate cellular conditions, and the results were compared with experiments involving human plasma and human serum albumin (HSA).
Results: This study is the first to demonstrate that dextran increases compound uptake in cells with overexpression of the OATP1B3 transporter. Contrary to the common theory that highly protein-bound ligands interact with hepatocytes to increase drug uptake, the results indicate that dextran's interaction with test compounds does not significantly increase concentrations near the cell membrane surface.
Conclusions: We evaluated the effect of dextran on the uptake of known substrates using OATP1B3 overexpressed in the HEK293 cell line, and we suggest that its impact on drug concentrations in liver cells may differ from the traditional role of plasma proteins and albumin.
(© 2024. The Author(s) under exclusive licence to Maj Institute of Pharmacology Polish Academy of Sciences.)
References: Bowman CM, Chen E, Chen L, Chen YC, Liang X, Wright M, et al. Changes in organic anion transporting polypeptide uptake in HEK293 overexpressing cells in the presence and absence of human plasma. Drug Metab Dispos. 2020;48(1):18–24. (PMID: 3169980710.1124/dmd.119.088948)
Kunze A, Huwyler J, Camenisch G, Poller B. Prediction of organic anion-transporting polypeptide 1B1- and 1B3-mediated hepatic uptake of statins based on transporter protein expression and activity data. Drug Metab Dispos. 2014;42(9):1514–21. (PMID: 2498989010.1124/dmd.114.058412)
Bowman CM, Okochi H, Benet LZ. The presence of a transporter-induced protein binding shift: a new explanation for protein-facilitated uptake and improvement for in vitro–in vivo extrapolation. Drug Metab Dispos. 2019;47(4):358–63. (PMID: 30674616641376910.1124/dmd.118.085779)
Elsby R, Chidlaw S, Outteridge S, Pickering S, Radcliffe A, Sullivan R, et al. Mechanistic in vitro studies confirm that inhibition of the renal apical efflux transporter multidrug and toxin extrusion (MATE) 1, and not altered absorption, underlies the increased metformin exposure observed in clinical interactions with cimetidine, trimethoprim or pyrimethamine. Pharmacol Res Perspect. 2017. https://doi.org/10.1002/prp2.357 . (PMID: 10.1002/prp2.357289716105625161)
Soars MG, McGinnity DF, Grime K, Riley RJ. The pivotal role of hepatocytes in drug discovery. Chem Biol Interact. 2007;168:2–15. https://doi.org/10.1016/j.cbi.2006.11.002 . (PMID: 10.1016/j.cbi.2006.11.00217208208)
Miyauchi S, Kim SJ, Lee W, Sugiyama Y. Consideration of albumin-mediated hepatic uptake for highly protein-bound anionic drugs: bridging the gap of hepatic uptake clearance between in vitro and in vivo. Pharmacol Ther. 2022;229: 107938. (PMID: 3417133510.1016/j.pharmthera.2021.107938)
Baik J, Huang Y (2015) Transporter-induced protein binding shift (TIPBS): hypothesis and modeling. In: Poster session presented in 20th North American ISSX meeting; 2015 Oct 18–22; Orlando, Florida.
Francis LJ, Houston JB, Hallifax D. Impact of plasma protein binding in drug clearance prediction: a database analysis of published studies and implications for in vitro-in vivo extrapolation. Drug Metab Dispos. 2021;49(3):188–201. (PMID: 3335520110.1124/dmd.120.000294)
Ricketts CR. Chemistry of dextran and its derivatives. J R Soc Med. 1951;44(7):558–9. (PMID: 10.1177/003591575104400707)
Noorman F, Barrett-Bergshoeff MM, Bekkers M, Emeis JJ, Rijken DC. Inhibition of mannose receptor-mediated clearance of tissue-type plasminogen activator (t-PA) by dextran: a new explanation for its antithrombotic effect. Thromb Haemost. 1997;78:1249–54 (Erratum in: Thromb Haemost 1998 Jul;80(1):210). (PMID: 936499310.1055/s-0038-1657723)
Jones CI, Payne DA, Hayes PD, Naylor AR, Bell PRF, Thompson MM, et al. The antithrombotic effect of dextran-40 in man is due to enhanced fibrinolysis in vivo. J Vasc Surg. 2008;48(3):715–22. (PMID: 1857235110.1016/j.jvs.2008.04.008)
Schmid M, Schindler R, Weigand K. Is albumin synthesis regulated by the colloid osmotic pressure? Effect of albumin and dextran on albumin and total protein synthesis in isolated rat hepatocytes. Klin Wochenschr. 1986;64(1):23–8. (PMID: 241963410.1007/BF01721577)
Shiyu H, Gangliang H. Preparation and drug delivery of dextran-drug complex. Drug Deliv. 2019;26(1):252–61. (PMID: 10.1080/10717544.2019.1580322)
Roberts JJ, Martens PJ. 9—Engineering biosynthetic cell encapsulation systems. In: Poole-Warren L, Martens P, Green R, editors. Woodhead publishing series in biomaterials, biosynthetic polymers for medical applications. Sawston: Woodhead Publishing; 2016. p. 205–39. (PMID: 10.1016/B978-1-78242-105-4.00009-2)
Kuznetsova IM, Turoverov KK, Uversky VN. What macromolecular crowding can do to a protein. Int J Mol Sci. 2014;15:23090–140. https://doi.org/10.3390/ijms151223090 . (PMID: 10.3390/ijms151223090255144134284756)
Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705. (PMID: 19785645276559010.1111/j.1476-5381.2009.00430.x)
Liang X, Park Y, DeForest N, Hao J, Zhao X, Niu C, et al. In vitro hepatic uptake in human and monkey hepatocytes in the presence and absence of serum protein and its in vitro to in vivo extrapolation. Drug Metab Dispos. 2020;48(12):1283–92. (PMID: 3303704310.1124/dmd.120.000163)
König J, Cui Y, Nies AT, Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem. 2000;275(30):23161–8. (PMID: 1077950710.1074/jbc.M001448200)
Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm Drug Dispos. 2013;34(1):45–78. (PMID: 2311508410.1002/bdd.1823)
Hirano M, Maeda K, Shitara Y, Sugiyama Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther. 2004;311(1):139–46. (PMID: 1515944510.1124/jpet.104.068056)
Oratz M, Rothschild MA, Schreiber SS. Effect of dextran infusions on protein synthesis by hepatic microsomes. Am J Physiol. 1970;218(4):1108–12. (PMID: 543540910.1152/ajplegacy.1970.218.4.1108)
Fuentes-Lemus E, Reyes JS, López-Alarcón C, Davies MJ. Crowding modulates the glycation of plasma proteins: in vitro analysis of structural modifications to albumin and transferrin and identification of sites of modification. Free Radic Biol Med. 2022;193(11):551–66. (PMID: 3633623010.1016/j.freeradbiomed.2022.10.319)
Barshtein G, Tamir I, Yedgar S. Red blood cell rouleaux formation in dextran solution: Dependence on polymer conformation. Eur Biophys J. 1998;27(2):177–81. (PMID: 953082810.1007/s002490050124)
Yin M, Storelli F, Unadkat JD. Is the protein-mediated uptake of drugs by organic anion transporting polypeptides a real phenomenon or an artifact? Drug Metab Dispos. 2022;50(9):1132–41. (PMID: 3535177510.1124/dmd.122.000849)
Schulz JA, Stresser DM, Kalvass JC. Plasma protein-mediated uptake and contradictions to the free drug hypothesis: a critical review. Drug Metab Rev. 2023;55(3):205–38. (PMID: 3697132510.1080/03602532.2023.2195133)
Yin M, Ishida K, Liang X, Lai Y, Unadkat JD. Interpretation of protein-mediated uptake of statins by hepatocytes is confounded by the residual statin-protein complex. Drug Metab Dispos. 2023;51(10):1381–90. (PMID: 3742972710.1124/dmd.123.001386)
Gerstin EHJ, Luong T, Ehlert FJ. Heparin, dextran and trypan blue allosterically modulate M2 muscarinic receptor binding properties and interfere with receptor-mediated inhibition of adenylate cyclase. J Pharmacol Exp Ther. 1992;263(3):910–7. (PMID: 1281880)
Cozzolino S, Graziano G. The magnitude of macromolecular crowding caused by dextran and ficoll for the conformational stability of globular proteins. J Mol Liq. 2021;322: 114969. (PMID: 10.1016/j.molliq.2020.114969)
Ghosh S, Shahid S, Raina N, Ahmad F, Hassan MI, Islam A. Molecular and macromolecular crowding-induced stabilization of proteins: effect of dextran and its building block alone and their mixtures on stability and structure of lysozyme. Int J Biol Macromol. 2020;150:1238–48. (PMID: 3176001210.1016/j.ijbiomac.2019.10.135)
Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol US. 2012;52:135–51. (PMID: 10.1146/annurev-pharmtox-010510-100556)
DeGorter MK, Ho RH, Leake BF, Tirona RG, Kim RB. Interaction of three regiospecific amino acid residues is required for OATP1B1 gain of OATP1B3 substrate specificity. Mol Pharm. 2012;9(4):986–95. (PMID: 22352740331919210.1021/mp200629s)
Wu X, Whitfield LR, Stewart BH. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter. Pharm Res. 2000;17(2):209–15. https://doi.org/10.1023/a:1007525616017 . (PMID: 10.1023/a:100752561601710751037)
Fong C. Statins in therapy: cellular transport, side effects, drug-drug interactions and cytotoxicity—the unrecognized role of lactones [research report]. Eigenenergy, Adelaide, Australia. 2016. hal-01185910v2.
Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem. 2001;276(52):48619–22. (PMID: 1168955010.1074/jbc.C100613200)
Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol. 1994;127(5):1217–32. (PMID: 752560610.1083/jcb.127.5.1217)
Calvo M, Tebar F, Lopez-Iglesias C, Enrich C. Morphologic and functional characterization of caveolae in rat liver hepatocytes. Hepatology. 2001;33(5):1259–69. (PMID: 1134325510.1053/jhep.2001.23937)
Kragh-Hansen U. Human serum albumin: a multifunctional protein. In: Otagiri M, Chuang VTG, editors. Albumin in medicine: pathological and clinical applications. Singapore: Springer; 2016. p. 1–24. https://doi.org/10.1007/978-981-10-2116-9 . (PMID: 10.1007/978-981-10-2116-9)
Zhu XD, Zhuang Y, Ben JJ, Qian LL, Huang HP, Bai H, et al. Caveolae-dependent endocytosis is required for class a macrophage scavenger receptor-mediated apoptosis in macrophages. J Biol Chem. 2011;286(10):8231–9. (PMID: 21205827304870910.1074/jbc.M110.145888)
Tomita M, Hotta Y, Ohkubo R, Awazu S. Polarized transport was observed not in hydrophilic compounds but in dextran in Caco-2 cell monolayers. Chem Pharm Bull. 1999;2(3):330–1. (PMID: 10.1248/bpb.22.330)
Ohkubo R, Hotta Y, Nagira M, Hayashi M, Tomita M. Comparative study of flux of FITC-labeled dextran 4000 on normal (iso)-and hyperosmolarity in basal side in Caco-2 cell monolayers. Drug Metab Pharmacokinet. 2003;18(6):404–8. (PMID: 1561876110.2133/dmpk.18.404)
Rothen-Rutishauser B. Quantification of gold nanoparticle cell uptake under controlled biological conditions and adequate resolution. Nanomedicine. 2014;9(5):607–21. (PMID: 2373863310.2217/nnm.13.24)
Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RGW. Caveolin, a protein component of caveolae membrane coats. Cell. 1992;68(4):673–82. (PMID: 173997410.1016/0092-8674(92)90143-Z)
Lin F, Das P, Zhao Y, Shen B, Hu R, Zhou F, et al. Monitoring the endocytosis of bovine serum albumin based on the fluorescence lifetime of small squaraine dye in living cells. Biomed Opt Express. 2020;11(1):149–59. (PMID: 3201050610.1364/BOE.11.000149)
Commisso C, Flinn RJ, Bar-Sagi D. Determining the macropinocytic index of cells through a quantitative image-based assay. Nat Protoc. 2014;9(1):182–92. (PMID: 24385148410378810.1038/nprot.2014.004)
Lin XP, Mintern JD, Gleeson PA. Macropinocytosis in different cell types: similarities and differences. Membranes (Basel). 2020;10(8):1–21.
Li L, Wan T, Wan M, Liu B, Cheng R, Zhang R. The effect of the size of fluorescent dextran on its endocytic pathway. Cell Biol Int. 2015;39(5):531–9. (PMID: 2562393810.1002/cbin.10424)
Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol. 2008;440:15–33. (PMID: 1836993410.1007/978-1-59745-178-9_2)
Canton J. Macropinocytosis: new insights into its underappreciated role in innate immune cell surveillance. Front Immunol. 2018;9(10):1–8.
Baker KJ, Bradley SE. Binding of sulfobromophthalein (BSP) sodium by plasma albumin. Its role in hepatic BSP extraction. J Clin Investig. 1966;45(2):281–7. (PMID: 590151229269310.1172/JCI105341)
Bowman CM, Benet LZ. An examination of protein binding and protein-facilitated uptake relating to in vitro–in vivo extrapolation. Eur J Pharm Sci. 2018;123:502–14. (PMID: 30098391636500610.1016/j.ejps.2018.08.008)
فهرسة مساهمة: Keywords: Dextran; In vitro uptake; OATP1B3
المشرفين على المادة: 0 (Dextrans)
0 (Solute Carrier Organic Anion Transporter Family Member 1B3)
0 (Liver-Specific Organic Anion Transporter 1)
0 (Organic Anion Transporters)
0 (Membrane Transport Proteins)
0 (Albumins)
0 (Organic Anion Transporters, Sodium-Independent)
تواريخ الأحداث: Date Created: 20240326 Date Completed: 20240416 Latest Revision: 20240416
رمز التحديث: 20240416
DOI: 10.1007/s43440-024-00583-8
PMID: 38530582
قاعدة البيانات: MEDLINE
الوصف
تدمد:2299-5684
DOI:10.1007/s43440-024-00583-8