دورية أكاديمية

A deep learning model for translating CT to ventilation imaging: analysis of accuracy and impact on functional avoidance radiotherapy planning.

التفاصيل البيبلوغرافية
العنوان: A deep learning model for translating CT to ventilation imaging: analysis of accuracy and impact on functional avoidance radiotherapy planning.
المؤلفون: Hou Z; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, Jiangsu, China., Kong Y; School of Computer Science and Engineering, Southeast University, Nanjing, 210000, Jiangsu, China.; Centre de Recherche en Information, BioMdicale Sino-Franais, Nanjing, China.; Centre de Recherche en Information, BioMdicale Sino-Franais, 35000, Rennes, France., Wu J; School of Computer Science and Engineering, Southeast University, Nanjing, 210000, Jiangsu, China., Gu J; School of Computer Science and Engineering, Southeast University, Nanjing, 210000, Jiangsu, China., Liu J; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, Jiangsu, China., Gao S; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, Jiangsu, China., Yin Y; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, Jiangsu, China., Zhang L; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, Jiangsu, China., Han Y; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, Jiangsu, China., Zhu J; Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China. zhujian@sdfmu.edu.cn.; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China. zhujian@sdfmu.edu.cn.; Centre de Recherche en Information, BioMdicale Sino-Franais, Nanjing, China. zhujian@sdfmu.edu.cn.; Centre de Recherche en Information, BioMdicale Sino-Franais, 35000, Rennes, France. zhujian@sdfmu.edu.cn., Li S; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, Jiangsu, China. lishuangshuang@njglyy.com.
المصدر: Japanese journal of radiology [Jpn J Radiol] 2024 Jul; Vol. 42 (7), pp. 765-776. Date of Electronic Publication: 2024 Mar 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Japan NLM ID: 101490689 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1867-108X (Electronic) Linking ISSN: 18671071 NLM ISO Abbreviation: Jpn J Radiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Tokyo : Springer
مواضيع طبية MeSH: Deep Learning* , Radiotherapy Planning, Computer-Assisted*/methods , Lung Neoplasms*/radiotherapy , Lung Neoplasms*/diagnostic imaging , Four-Dimensional Computed Tomography*/methods, Humans ; Female ; Male ; Aged ; Carcinoma, Non-Small-Cell Lung/radiotherapy ; Carcinoma, Non-Small-Cell Lung/diagnostic imaging ; Middle Aged ; Tomography, X-Ray Computed/methods ; Lung/diagnostic imaging
مستخلص: Purpose: Radiotherapy planning incorporating functional lung images has the potential to reduce pulmonary toxicity. Free-breathing 4DCT-derived ventilation image (CTVI) may help quantify lung function. This study introduces a novel deep-learning model directly translating planning CT images into CTVI. We investigated the accuracy of generated images and the impact on functional avoidance planning.
Materials and Methods: Paired planning CT and 4DCT scans from 48 patients with NSCLC were randomized to training (n = 41) and testing (n = 7) data sets. The ventilation maps were generated from 4DCT using a Jacobian-based algorithm to provide ground truth labels (CTVI 4DCT ). A 3D U-Net-based model was trained to map CT to synthetic CTVI (CTVI Syn ) and validated using fivefold cross-validation. The highest-performing model was applied to the testing set. Spearman's correlation (r s ) and Dice similarity coefficient (DSC) determined voxel-wise and functional-wise concordance between CTVI 4DCT and CTVI Syn . Three plans were designed per patient in the testing set: one clinical plan without CTVI and two functional avoidance plans combined with CTVI 4DCT or CTVI Syn , aimed at sparing high-functional lungs defined as the top 50% of the percentile ventilation ranges. Dose-volume (DVH) parameters regarding the planning target volume (PTV) and organs at risk (OARs) were recorded. Radiation pneumonitis (RP) risk was estimated using a dose-function (DFH)-based normal tissue complication probability (NTCP) model.
Results: CTVI Syn showed a mean rs value of 0.65 ± 0.04 compared to CTVI 4DCT . Mean DSC values over the top 50% and 60% of ventilation ranges were 0.41 ± 0.07 and 0.52 ± 0.10, respectively. In the test set (n = 7), all patients' RP-risk benefited from CTVI 4DCT -guided plans (Risk mean_4DCT_vs_Clinical : 29.24% vs. 49.12%, P = 0.016), and six patients benefited from CTVI Syn -guided plans (Risk mean_Syn_vs_Clinical : 31.13% vs. 49.12%, P = 0.022). There were no significant differences in DVH and DFH metrics between CTVI Syn and CTVI 4DCT -guided plan (P > 0.05).
Conclusion: Using deep-learning techniques, CTVI Syn generated from planning CT exhibited a moderate-to-high correlation with CTVI 4DCT . The CTVI Syn -guided plans were comparable to the CTVI 4DCT -guided plans, effectively reducing pulmonary toxicity in patients while maintaining acceptable plan quality. Further prospective trials are needed to validate these findings.
(© 2024. The Author(s) under exclusive licence to Japan Radiological Society.)
References: Puttanawarut C, Sirirutbunkajorn N, Khachonkham S, Pattaranutaporn P, Wongsawat Y. Biological dosiomic features for the prediction of radiation pneumonitis in esophageal cancer patients. Radiat Oncol. 2021;16:1–9. (PMID: 10.1186/s13014-021-01950-y)
Rankine LJ, Wang Z, Kelsey CR, Bier E, Driehuys B, Marks LB, et al. Hyperpolarized 129Xe magnetic resonance imaging for functional avoidance treatment planning in thoracic radiation therapy: a comparison of ventilation-and gas exchange-guided treatment plans. Int J Rad Oncol Biol Phys. 2021;111(4):1044–57. (PMID: 10.1016/j.ijrobp.2021.07.002)
O’Reilly S, Jain V, Huang Q, Cheng C, Teo B-KK, Yin L, et al. Dose to highly functional ventilation zones improves prediction of radiation pneumonitis for proton and photon lung cancer radiation therapy. Int J Rad Oncol Biol Phys. 2020;107(1):79–87. (PMID: 10.1016/j.ijrobp.2020.01.014)
Faught AM, Miyasaka Y, Kadoya N, Castillo R, Castillo E, Vinogradskiy Y, et al. Evaluating the toxicity reduction with computed tomographic ventilation functional avoidance radiation therapy. Int J Rad Oncol Biol Phys. 2017;99(2):325–33. (PMID: 10.1016/j.ijrobp.2017.04.024)
Vinogradskiy Y, Rusthoven CG, Schubert L, Jones B, Faught A, Castillo R, et al. Interim analysis of a two-institution, prospective clinical trial of 4DCT-ventilation-based functional avoidance radiation therapy. Int J Rad Oncol Biol Phys. 2018;102(4):1357–65. (PMID: 10.1016/j.ijrobp.2018.07.186)
Dougherty JM, Castillo E, Castillo R, Faught AM, Pepin M, Park SS, et al. Functional avoidance-based intensity modulated proton therapy with 4DCT derived ventilation imaging for lung cancer. J Appl Clin Med Phys. 2021;22(7):276–85. (PMID: 10.1002/acm2.13323341597158292710)
Vinogradskiy Y, Castillo R, Castillo E, Schubert L, Jones BL, Faught A, et al. Results of a multi-institutional phase 2 clinical trial for 4DCT-ventilation functional avoidance thoracic radiation therapy. Int J Rad Oncol Biol Phys. 2022;112(4):986–95. (PMID: 10.1016/j.ijrobp.2021.10.147)
De Bari B, Deantonio L, Bourhis J, Prior JO, Ozsahin M. Should we include SPECT lung perfusion in radiotherapy treatment plans of thoracic targets? Evidences from the literature. Crit Rev Oncol Hematol. 2016;102:111–7. (PMID: 10.1016/j.critrevonc.2016.04.00927132077)
Hodge C, Tomé WA, Fain S, Bentzen S, Mehta M. On the use of hyperpolarized helium MRI for conformal avoidance lung radiotherapy. Med Dosim. 2010;35(4):297–303. (PMID: 10.1016/j.meddos.2009.09.00419944585)
Han G, Yang L, Deng H, Li H, Yu D, Ma G, et al. Hyperpolarized 129xe gas MRI pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2019;105(1):S199–200. (PMID: 10.1016/j.ijrobp.2019.06.262)
Mathew L, VanDyk J, Etemad-Rezai R, Rodrigues G, Parraga G. Hyperpolarized 3He pulmonary functional magnetic resonance imaging prior to radiation therapy. Med Phys. 2012;39:4284–90. (PMID: 10.1118/1.472971322830762)
Frey KA, Gross MD, Hayman JA, Arenberg D, Cai X-W, Ramnath N, et al. Changes in global function and regional ventilation and perfusion on SPECT during the course of radiotherapy in patients with non-small-cell lung cancer. Int J Rad Oncol Biol Phys. 2012;82(4):e631–8. (PMID: 10.1016/j.ijrobp.2011.07.044)
Eslick EM, Kipritidis J, Gradinscak D, Stevens MJ, Bailey DL, Harris B, et al. CT ventilation imaging derived from breath hold CT exhibits good regional accuracy with Galligas PET. Radiother Oncol. 2018;127(2):267–73. (PMID: 10.1016/j.radonc.2017.12.01029290405)
Tahir BA, Marshall H, Hughes PJ, Brightling CE, Collier G, Ireland RH, et al. Comparison of CT ventilation imaging and hyperpolarised gas MRI: effects of breathing manoeuvre. Phys Med Biol. 2019;64(5): 055013. (PMID: 10.1088/1361-6560/ab014530673634)
Wang R, Zhang S, Yu H, Lin S, Zhang G, Tang R, et al. Optimal beam arrangement for pulmonary ventilation image-guided intensity-modulated radiotherapy for lung cancer. Radiat Oncol. 2014;9(1):184. (PMID: 10.1186/1748-717X-9-184251278994141960)
Kadoya N, Cho SY, Kanai T, Onozato Y, Ito K, Dobashi S, et al. Dosimetric impact of 4-dimensional computed tomography ventilation imaging-based functional treatment planning for stereotactic body radiation therapy with 3-dimensional conformal radiation therapy. Pract Radiat Oncol. 2015;5(5):e505–12. (PMID: 10.1016/j.prro.2015.03.00125899221)
Li S, Liu J, Gao S, Yin Y, Zhang L, Han Y, et al. CT ventilation image-guided helical Tomotherapy at sparing functional lungs for locally advanced lung cancer: analysis of dose-function metrics and the impact on pulmonary toxicity. Radiat Oncol. 2023;18(1):6. (PMID: 10.1186/s13014-022-02189-x366245379830733)
Mori S, Ko S, Ishii T, Nishizawa K. Effective doses in four-dimensional computed tomography for lung radiotherapy planning. Med Dosim. 2009;34(1):87–90. (PMID: 10.1016/j.meddos.2008.08.00219181261)
Westcott A, Capaldi DP, McCormack DG, Ward AD, Fenster A, Parraga G. Chronic obstructive pulmonary disease: thoracic CT texture analysis and machine learning to predict pulmonary ventilation. Radiology. 2019;293(3):676–84. (PMID: 10.1148/radiol.201919045031638491)
Ren G, Zhang J, Li T, Xiao H, Cheung LY, Ho WY, et al. Deep learning-based computed tomography perfusion mapping (DL-CTPM) for pulmonary CT-to-perfusion translation. Int J Rad Oncol Biol Phys. 2021;110(5):1508–18. (PMID: 10.1016/j.ijrobp.2021.02.032)
Capaldi DP, Guo F, Xing L, Parraga G. Pulmonary ventilation maps generated with free-breathing proton MRI and a deep convolutional neural network. Radiology. 2021;298(2):427–38. (PMID: 10.1148/radiol.202020286133289613)
Kipritidis J, Woodruff HC, Eslick EM, Hegi-Johnson F, Keall PJ, editors. New pathways for end-to-end validation of CT ventilation imaging (CTVI) using deformable image registration. 2016 IEEE 13th international symposium on biomedical imaging (ISBI); 2016: IEEE.
Ronneberger O, Fischer P, Brox T, editors. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18; 2015: Springer.
Woo S, Park J, Lee J-Y, Kweon IS, editors. Cbam: Convolutional block attention module. Proceedings of the European conference on computer vision (ECCV); 2018.
Isensee F, Jäger PF, Kohl SA, Petersen J, Maier-Hein KH. Automated design of deep learning methods for biomedical image segmentation. arXiv preprint arXiv:190408128. 2019.
He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016.
Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging. 2019;39(6):1856–67. (PMID: 10.1109/TMI.2019.2959609318414027357299)
San José Estépar R. Artificial intelligence in functional imaging of the lung. Br J Radiol. 2022. https://doi.org/10.1259/bjr.20210527 . (PMID: 10.1259/bjr.2021052734890215)
Fain SB. Machine learning reveals the texture of regional lung ventilation at CT. Radiological Society of North America; 2019. p. 685–6.
Kida S, Bal M, Kabus S, Negahdar M, Shan X, Loo BW Jr, et al. CT ventilation functional image-based IMRT treatment plans are comparable to SPECT ventilation functional image-based plans. Radiother Oncol. 2016;118(3):521–7. (PMID: 10.1016/j.radonc.2016.02.01926922488)
Matuszak MM, Kashani R, Green M, Lee C, Cao Y, Owen D, et al., editors. Functional adaptation in radiation therapy. Semin Radiat Oncol; 2019: Elsevier.
معلومات مُعتمدة: 82202300 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: 4DCT; Deep learning; Lung cancer; Radiotherapy; Synthetic imaging; Ventilation imaging
تواريخ الأحداث: Date Created: 20240327 Date Completed: 20240701 Latest Revision: 20240701
رمز التحديث: 20240702
DOI: 10.1007/s11604-024-01550-2
PMID: 38536558
قاعدة البيانات: MEDLINE