دورية أكاديمية

An updated systematic review of neuroprotective agents in the treatment of spinal cord injury.

التفاصيل البيبلوغرافية
العنوان: An updated systematic review of neuroprotective agents in the treatment of spinal cord injury.
المؤلفون: Serag I; Faculty of Medicine, Mansoura University, Mansoura, Egypt., Abouzid M; Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St, 60-806, Poznan, Poland. mmahmoud@ump.edu.pl.; Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland. mmahmoud@ump.edu.pl., Elmoghazy A; Faculty of Medicine, Mansoura University, Mansoura, Egypt., Sarhan K; Faculty of Medicine, Mansoura University, Mansoura, Egypt., Alsaad SA; Faculty of Applied Medical Sciences, Jerash University, Jerash, Jordan., Mohamed RG; Mansoura Manchester Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
المصدر: Neurosurgical review [Neurosurg Rev] 2024 Mar 28; Vol. 47 (1), pp. 132. Date of Electronic Publication: 2024 Mar 28.
نوع المنشور: Systematic Review; Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Berlin Heidelberg Country of Publication: Germany NLM ID: 7908181 Publication Model: Electronic Cited Medium: Internet ISSN: 1437-2320 (Electronic) Linking ISSN: 03445607 NLM ISO Abbreviation: Neurosurg Rev Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Springer Berlin Heidelberg
Original Publication: Berlin : Walter De Gruyter
مواضيع طبية MeSH: Neuroprotective Agents*/therapeutic use , Spinal Cord Injuries*/drug therapy , Erythropoietin*/therapeutic use, Humans ; Riluzole/therapeutic use ; Blood Alcohol Content ; Progesterone/therapeutic use ; Methylprednisolone/therapeutic use ; Granulocyte Colony-Stimulating Factor/therapeutic use ; Vitamin D/therapeutic use
مستخلص: This systematic review aims to summarize the findings from all clinical randomized trials assessing the efficacy of potential neuroprotective agents in influencing the outcomes of acute spinal cord injuries (SCI). Following the PRISMA guidelines, we conducted comprehensive searches in four electronic databases (PubMed, Scopus, Cochrane Library, and Web of Science) up to September 5th, 2023. Our analysis included a total of 30 studies. We examined the effects of 15 substances/drugs: methylprednisolone, tirilazad mesylate, erythropoietin, nimodipine, naloxone, Sygen, Rho protein antagonist, granulocyte colony-stimulating factor, autologous macrophages, autologous bone marrow cells, vitamin D, progesterone, riluzole, minocycline, and blood alcohol concentration. Notable improvements in neurological outcomes were observed with progesterone plus vitamin D and granulocyte colony-stimulating factor. In contrast, results for methylprednisolone, erythropoietin, Sygen, Rho Protein, and Riluzole were inconclusive, primarily due to insufficient sample size or outdated evidence. No significant differences were found in the remaining evaluated drugs. Progesterone plus vitamin D, granulocyte colony-stimulating factor, methylprednisolone, Sygen, Rho Protein, and Riluzole may enhance neurological outcomes in acute SCI cases. It is worth noting that different endpoints or additional subgroup analyses may potentially alter the conclusions of individual trials. Therefore, certain SCI grades may benefit more from these treatments than others, while the overall results may remain inconclusive.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Spinal cord injury. [cited 23 May 2023]. Available: https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury.
Abouzid M, Karazniewicz-Lada M, Glowka F (2018) Genetic Determinants of Vitamin D-Related Disorders; Focus on Vitamin D Receptor. Curr Drug Metab 19:1042–1052. https://doi.org/10.2174/1389200219666180723143552. (PMID: 10.2174/138920021966618072314355230039758)
Abouzid M, Główka F, Kagan L, Karaźniewicz-Łada M (2022) Vitamin D Metabolism Gene Polymorphisms and Their Associated Disorders: A Literature Review. Curr Drug Metab. https://doi.org/10.2174/1389200223666220627104139. (PMID: 10.2174/138920022366622062710413935761493)
Aghayan HR, Arjmand B, Yaghoubi M, Moradi-Lakeh M, Kashani H, Shokraneh F (2014) Clinical outcome of autologous mononuclear cells transplantation for spinal cord injury: a systematic review and meta-analysis. Med J Islam Repub Iran 28:112. (PMID: 256789914313447)
Akhtar A, Pippin J, Sandusky C. Animal Studies in Spinal Cord Injury: A Systematic Review of Methylprednisolone. Validation of Animal Experimentation Collection. 2009. Available: https://www.wellbeingintlstudiesrepository.org/valaexp/13.
Alibai E, Zand F, Rahimi A, Rezaianzadeh A (2014) Erythropoietin plus methylprednisolone or methylprednisolone in the treatment of acute spinal cord injury: a preliminary report. Acta Med Iran 52:275–279. (PMID: 24901857)
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol. 10. https://doi.org/10.3389/fneur.2019.00282.
Altamura AC, Regazzetti MG, Porta M (1990) Nimodipine in human alcohol withdrawal syndrome — an open study. Eur Neuropsychopharmacol 1:37–40. https://doi.org/10.1016/0924-977X(90)90008-X. (PMID: 10.1016/0924-977X(90)90008-X2136211)
Aminmansour B, Asnaashari A, Rezvani M, Ghaffarpasand F, Amin Noorian SM, Saboori M et al (2016) Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J Spinal Cord Med 39:272–280. https://doi.org/10.1080/10790268.2015.1114224. (PMID: 10.1080/10790268.2015.1114224268328885073761)
Amorim S, Teixeira VH, Corredeira R, Cunha M, Maia B, Margalho P et al (2018) Creatine or vitamin D supplementation in individuals with a spinal cord injury undergoing resistance training: A double-blinded, randomized pilot trial. J Spinal Cord Med 41:471–478. https://doi.org/10.1080/10790268.2017.1372058. (PMID: 10.1080/10790268.2017.137205828901216)
Anderson DK, Braughler JM, Hall ED, Waters TR, McCall JM, Means ED (1988) Effects of treatment with U-74006F on neurological outcome following experimental spinal cord injury. J Neurosurg 69:562–567. https://doi.org/10.3171/jns.1988.69.4.0562. (PMID: 10.3171/jns.1988.69.4.05623418389)
Anderson DK, Hall ED, Braughler JM, McCall JM, Means ED (1991) Effect of Delayed Administration of U74006F (Tirilazad Mesylate) on Recovery of Locomotor Function After Experimental Spinal Cord Injury. J Neurotrauma 8:187–192. (PMID: 10.1089/neu.1991.8.1871803027)
Atif F, Sayeed I, Ishrat T, Stein DG (2009) Progesterone with vitamin D affords better neuroprotection against excitotoxicity in cultured cortical neurons than progesterone alone. Mol Med 15:328–336. https://doi.org/10.2119/molmed.2009.00016. (PMID: 10.2119/molmed.2009.00016196030992710287)
Aydin Z, Mallat MJK, Schaapherder AFM, van Zonneveld AJ, van Kooten C, Rabelink TJ et al (2012) Randomized trial of short-course high-dose erythropoietin in donation after cardiac death kidney transplant recipients. Am J Transplant 12:1793–1800. https://doi.org/10.1111/j.1600-6143.2012.04019.x. (PMID: 10.1111/j.1600-6143.2012.04019.x22429395)
Bassuino M, Kaminski E, Garcia L, Linden R, Antunes M, Schneider R et al (2018) Factors related to decreased vitamin D levels in men with spinal cord injury living in a subtropical region. Scientia Medica 28:28381. https://doi.org/10.15448/1980-6108.2018.2.28381. (PMID: 10.15448/1980-6108.2018.2.28381)
Bauman WA, Zhong YG, Schwartz E (1995) Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 44:1612–1616. https://doi.org/10.1016/0026-0495(95)90083-7. (PMID: 10.1016/0026-0495(95)90083-78786732)
Bellingham MC (2011) A Review of the Neural Mechanisms of Action and Clinical Efficiency of Riluzole in Treating Amyotrophic Lateral Sclerosis: What have we Learned in the Last Decade? CNS Neurosci Ther 17:4–31. https://doi.org/10.1111/j.1755-5949.2009.00116.x. (PMID: 10.1111/j.1755-5949.2009.00116.x202361426493865)
Blair JA, Patzkowski JC, Schoenfeld AJ, Cross Rivera JD, Grenier ES, Lehman RA et al (2012) Are spine injuries sustained in battle truly different? Spine J 12:824–829. https://doi.org/10.1016/j.spinee.2011.09.012. (PMID: 10.1016/j.spinee.2011.09.01222000726)
Botelho RV, Daniel JW, Boulosa JLR, Colli BO, de Farias RL, Moraes OJS et al (2009) Effectiveness of methylprednisolone in the acute phase of spinal cord injuries–a systematic review of randomized controlled trials. Rev Assoc Med Bras 55:729–737. https://doi.org/10.1590/s0104-42302009000600019. (PMID: 10.1590/s0104-4230200900060001920191229)
Bourguignon L, Tong B, Geisler F, Schubert M, Röhrich F, Saur M et al (2022) International surveillance study in acute spinal cord injury confirms viability of multinational clinical trials. BMC Med 20:225. https://doi.org/10.1186/s12916-022-02395-0. (PMID: 10.1186/s12916-022-02395-0357059479202190)
Bracken MB (2012) Steroids for acute spinal cord injury. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD001046.pub2.
Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM et al (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251:45–52. (PMID: 10.1001/jama.1984.033402500250156361287)
Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, Freeman DF et al (1985) Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 63:704–713. https://doi.org/10.3171/jns.1985.63.5.0704. (PMID: 10.3171/jns.1985.63.5.07043903070)
Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322:1405–1411. https://doi.org/10.1056/NEJM199005173222001. (PMID: 10.1056/NEJM1990051732220012278545)
Bracken MB, Shepard MJ, Collins WF, Holford TR, Baskin DS, Eisenberg HM et al (1992) Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg 76:23–31. https://doi.org/10.3171/jns.1992.76.1.0023. (PMID: 10.3171/jns.1992.76.1.00231727165)
Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M et al (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277:1597–1604. (PMID: 10.1001/jama.1997.035404400310299168289)
Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M et al (1998) Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg 89:699–706. https://doi.org/10.3171/jns.1998.89.5.0699. (PMID: 10.3171/jns.1998.89.5.06999817404)
Braughler JM, Chase RL, Neff GL, Yonkers PA, Day JS, Hall ED et al (1988) A new 21-aminosteroid antioxidant lacking glucocorticoid activity stimulates adrenocorticotropin secretion and blocks arachidonic acid release from mouse pituitary tumor (AtT-20) cells. J Pharmacol Exp Ther 244:423–427. (PMID: 2831338)
Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C et al (2000) Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci 97:10526–10531. https://doi.org/10.1073/pnas.97.19.10526. (PMID: 10.1073/pnas.97.19.105261098454127058)
Buljan M, Nemet D, Golubic-Cepulic B, Bicanic G, Tripkovic B, Delimar D (2012) Two different dosing regimens of human recombinant erythropoietin beta during preoperative autologous blood donation in patients having hip arthroplasty. Int Orthop 36:703–709. https://doi.org/10.1007/s00264-011-1367-7. (PMID: 10.1007/s00264-011-1367-721964703)
Bydon M, Lin J, Macki M, Gokaslan ZL, Bydon A (2014) The current role of steroids in acute spinal cord injury. World Neurosurg 82:848–854. https://doi.org/10.1016/j.wneu.2013.02.062. (PMID: 10.1016/j.wneu.2013.02.06223454689)
Camargos QM, Silva BC, Silva DG, de Brito Toscano EC, da Silva OB, Bellozi PM et al (2020) Minocycline treatment prevents depression and anxiety-like behaviors and promotes neuroprotection after experimental ischemic stroke. Brain Res Bullet 155:1–10. https://doi.org/10.1016/j.brainresbull.2019.11.009. (PMID: 10.1016/j.brainresbull.2019.11.009)
Casha S, Zygun D, McGowan MD, Bains I, Yong VW, John HR (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135:1224–1236. https://doi.org/10.1093/brain/aws072. (PMID: 10.1093/brain/aws07222505632)
Chang C-M, Lee M-H, Wang T-C, Weng H-H, Chung C-Y, Yang J-T (2009) Brain protection by methylprednisolone in rats with spinal cord injury. NeuroReport 20:968. https://doi.org/10.1097/WNR.0b013e32832d0a28. (PMID: 10.1097/WNR.0b013e32832d0a2819525878)
Chen Y, Guo Z, Peng X, Xie W, Chen L, Tan Z (2018) Nimodipine represses AMPK phosphorylation and excessive autophagy after chronic cerebral hypoperfusion in rats. Brain Res Bull 140:88–96. https://doi.org/10.1016/j.brainresbull.2018.03.019. (PMID: 10.1016/j.brainresbull.2018.03.01929625150)
Chhabra HS, Sarda K, Arora M, Sharawat R, Singh V, Nanda A et al (2016) Autologous bone marrow cell transplantation in acute spinal cord injury–an Indian pilot study. Spinal Cord 54:57–64. https://doi.org/10.1038/sc.2015.134. (PMID: 10.1038/sc.2015.13426282492)
Chung J, Kim MH, Yoon YJ, Kim KH, Park SR, Choi BH (2014) Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats. J Neurosurg Spine 21:966–973. https://doi.org/10.3171/2014.8.SPINE131090. (PMID: 10.3171/2014.8.SPINE13109025279652)
Cifra A, Mazzone GL, Nistri A (2013) Riluzole: What It Does to Spinal and Brainstem Neurons and How It Does It. Neuroscientist 19:137–144. https://doi.org/10.1177/1073858412444932. (PMID: 10.1177/107385841244493222596264)
Costa DD, Beghi E, Carignano P, Pagliacci C, Faccioli F, Pupillo E et al (2015) Tolerability and efficacy of erythropoietin (EPO) treatment in traumatic spinal cord injury: a preliminary randomized comparative trial vs. methylprednisolone (MP). Neurol Sci 36:1567–1574. https://doi.org/10.1007/s10072-015-2182-5. (PMID: 10.1007/s10072-015-2182-525820146)
de Boer JN, Vingerhoets C, Hirdes M, McAlonan GM, Amelsvoort TV, Zinkstok JR (2019) Efficacy and tolerability of riluzole in psychiatric disorders: A systematic review and preliminary meta-analysis. Psychiatry Res 278:294–302. https://doi.org/10.1016/j.psychres.2019.06.020. (PMID: 10.1016/j.psychres.2019.06.02031254879)
Derakhshanrad N, Saberi H, Yekaninejad MS, Joghataei MT (2018) Subcutaneous granulocyte colony-stimulating factor administration for subacute traumatic spinal cord injuries, report of neurological and functional outcomes: a double-blind randomized controlled clinical trial. J Neurosurg Spine 30:19–30. https://doi.org/10.3171/2018.6.SPINE18209. (PMID: 10.3171/2018.6.SPINE1820930497202)
Dittgen T, Pitzer C, Plaas C, Kirsch F, Vogt G, Laage R et al (2012) Granulocyte-colony stimulating factor (G-CSF) improves motor recovery in the rat impactor model for spinal cord injury. PLoS ONE 7:e29880. https://doi.org/10.1371/journal.pone.0029880. (PMID: 10.1371/journal.pone.0029880222538133257226)
Evaniew N, Belley-Côté EP, Fallah N, Noonan VK, Rivers CS, Dvorak MF (2016) Methylprednisolone for the Treatment of Patients with Acute Spinal Cord Injuries: A Systematic Review and Meta-Analysis. J Neurotrauma 33:468–481. https://doi.org/10.1089/neu.2015.4192. (PMID: 10.1089/neu.2015.4192265293204779323)
Farahabadi A, Akbari M, Amini Pishva A, Zendedel A, Arabkheradmand A, Beyer C et al (2016) Effect of Progesterone Therapy on TNF-α and iNOS Gene Expression in Spinal Cord Injury Model. Acta Med Iran 54:345–351. (PMID: 27306339)
Fehlings MG, Theodore N, Harrop J, Maurais G, Kuntz C, Shaffrey CI et al (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28:787–796. https://doi.org/10.1089/neu.2011.1765. (PMID: 10.1089/neu.2011.176521381984)
Fehlings MG, Chen Y, Aarabi B, Ahmad F, Anderson KD, Dumont T et al (2021) A Randomized Controlled Trial of Local Delivery of a Rho Inhibitor (VX-210) in Patients with Acute Traumatic Cervical Spinal Cord Injury. J Neurotrauma 38:2065–2072. https://doi.org/10.1089/neu.2020.7096. (PMID: 10.1089/neu.2020.7096335595248309435)
Fehlings MG, Moghaddamjou A, Harrop JS, Stanford R, Ball J, Aarabi B et al (2023) Safety and Efficacy of Riluzole in Acute Spinal Cord Injury Study (RISCIS): A Multi-Center, Randomized, Placebo-Controlled. Double-Blinded Trial J Neurotrauma 40:1878–1888. https://doi.org/10.1089/neu.2023.0163. (PMID: 10.1089/neu.2023.016337279301)
Flamm ES, Young W, Collins WF, Piepmeier J, Clifton GL, Fischer B (1985) A phase I trial of naloxone treatment in acute spinal cord injury. J Neurosurg 63:390–397. https://doi.org/10.3171/jns.1985.63.3.0390. (PMID: 10.3171/jns.1985.63.3.03903894597)
Furlan JC, Fehlings MG (2013) Blood alcohol concentration as a determinant of outcomes after traumatic spinal cord injury. Eur J Neurol 20:1101–1106. https://doi.org/10.1111/ene.12145. (PMID: 10.1111/ene.1214523551822)
Ganjeifar B, Rezaee H, Keykhosravi E, Tavallaii A, Bahadorkhan G, Nakhaei M et al (2021) The effect of combination therapy with erythropoietin and methylprednisolone in patients with traumatic cervical spinal cord injury: a pilot randomized controlled trial. Spinal Cord 59:347–353. https://doi.org/10.1038/s41393-020-00604-2. (PMID: 10.1038/s41393-020-00604-233495576)
Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal-cord injury–a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324:1829–1838. https://doi.org/10.1056/NEJM199106273242601. (PMID: 10.1056/NEJM1991062732426012041549)
Geisler FH, Coleman WP, Grieco G, Poonian D, Sygen Study Group (2001) The Sygen multicenter acute spinal cord injury study. Spine (Phila Pa 1976) 26:87–98. https://doi.org/10.1097/00007632-200112151-00015. (PMID: 10.1097/00007632-200112151-00015)
Grant P, Song JY, Swedo SE (2010) Review of the Use of the Glutamate Antagonist Riluzole in Psychiatric Disorders and a Description of Recent Use in Childhood Obsessive-Compulsive Disorder. J Child Adolesc Psychopharmacol 20:309–315. https://doi.org/10.1089/cap.2010.0009. (PMID: 10.1089/cap.2010.0009208070692958461)
Grondin R, Cass WA, Zhang Z, Stanford JA, Gash DM, Gerhardt GA (2003) Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J Neurosci 23:1974–1980. https://doi.org/10.1523/JNEUROSCI.23-05-01974.2003. (PMID: 10.1523/JNEUROSCI.23-05-01974.2003126292036741972)
Grossman RG, Fehlings MG, Frankowski RF, Burau KD, Chow DSL, Tator C et al (2014) A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma 31:239–255. https://doi.org/10.1089/neu.2013.2969. (PMID: 10.1089/neu.2013.2969238594353904533)
Hachem LD, Ahuja CS, Fehlings MG (2017) Assessment and management of acute spinal cord injury: From point of injury to rehabilitation. J Spinal Cord Med 40:665–675. https://doi.org/10.1080/10790268.2017.1329076. (PMID: 10.1080/10790268.2017.1329076285715275778930)
Hafezi-Nejad N, Rahimi-Movaghar V (2013) Using recombinant Rho protein antagonist in acute spinal cord injury; does this go further from conventional decompressions? Front Neurol 4:5. https://doi.org/10.3389/fneur.2013.00005. (PMID: 10.3389/fneur.2013.00005233868423564210)
Hagan CR, Daniel AR, Dressing GE, Lange CA (2012) Role of phosphorylation in progesterone receptor signaling and specificity. Mol Cell Endocrinol 357:43–49. https://doi.org/10.1016/j.mce.2011.09.017. (PMID: 10.1016/j.mce.2011.09.01721945472)
Hall ED (1988) Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats. J Neurosurg 68:462–465. https://doi.org/10.3171/jns.1988.68.3.0462. (PMID: 10.3171/jns.1988.68.3.04623343617)
Hall ED (1996) Efficacy and mechanisms of action of the cytoprotective lipid peroxidation inhibitor tirilazad mesylate in subarachnoid haemorrhage. Eur J Anaesthesiol 13:279–289. https://doi.org/10.1046/j.1365-2346.1996.00980.x. (PMID: 10.1046/j.1365-2346.1996.00980.x8737119)
Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1:80–100. https://doi.org/10.1602/neurorx.1.1.80. (PMID: 10.1602/neurorx.1.1.8015717009534914)
Hall ED, McCall JM, Means ED (1994) Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol 28:221–268. https://doi.org/10.1016/s1054-3589(08)60497-4. (PMID: 10.1016/s1054-3589(08)60497-48080818)
Hamilton AJ, Black PM, Carr DB (1985) Contrasting actions of naloxone in experimental spinal cord trauma and cerebral ischemia: a review. Neurosurgery 17:845–849. https://doi.org/10.1227/00006123-198511000-00023. (PMID: 10.1227/00006123-198511000-000232999639)
Hernández CC, Burgos CF, Gajardo AH, Silva-Grecchi T, Gavilan J, Toledo JR et al (2017) Neuroprotective effects of erythropoietin on neurodegenerative and ischemic brain diseases: the role of erythropoietin receptor. Neural Regen Res 12:1381. https://doi.org/10.4103/1673-5374.215240. (PMID: 10.4103/1673-5374.215240290899745649449)
Hinchcliffe M, Smith A (2017) Riluzole: real-world evidence supports significant extension of median survival times in patients with amyotrophic lateral sclerosis. DNND 7:61–70. https://doi.org/10.2147/DNND.S135748. (PMID: 10.2147/DNND.S135748)
Hurlbert RJ, Hadley MN, Walters BC, Aarabi B, Dhall SS, Gelb DE et al (2013) Pharmacological therapy for acute spinal cord injury. Neurosurgery 72(Suppl 2):93–105. https://doi.org/10.1227/NEU.0b013e31827765c6. (PMID: 10.1227/NEU.0b013e31827765c623417182)
Inoue-Shibui A, Kato M, Suzuki N, Kobayashi J, Takai Y, Izumi R et al (2019) Interstitial pneumonia and other adverse events in riluzole-administered amyotrophic lateral sclerosis patients: a retrospective observational study. BMC Neurol 19:72. https://doi.org/10.1186/s12883-019-1299-1. (PMID: 10.1186/s12883-019-1299-1310291136487018)
Javidan AN, Sabour H, Latifi S, Vafa M, Shidfar F, Khazaeipour Z et al (2014) Calcium and vitamin D plasma concentration and nutritional intake status in patients with chronic spinal cord injury: A referral center report. J Res Med Sci 19:881–884. (PMID: 255355044268198)
Jin Z, Liang J, Wang J, Kolattukudy PE (2015) MCP-induced protein 1 mediates the minocycline-induced neuroprotection against cerebral ischemia/reperfusion injury in vitro and in vivo. J Neuroinflammation 12:39. https://doi.org/10.1186/s12974-015-0264-1. (PMID: 10.1186/s12974-015-0264-1258888694359584)
Joaquim AF, Daniel JW, Schroeder GD, Vaccaro AR (2020) Neuroprotective Agents as an Adjuvant Treatment in Patients With Acute Spinal Cord Injuries: A Qualitative Systematic Review of Randomized Trials. Clin Spine Surg 33:65–75. https://doi.org/10.1097/BSD.0000000000000861. (PMID: 10.1097/BSD.000000000000086131404015)
Kadota R, Koda M, Kawabe J, Hashimoto M, Nishio Y, Mannoji C et al (2012) Granulocyte Colony-Stimulating Factor (G-CSF) Protects Oligpdendrocyte and Promotes Hindlimb Functional Recovery after Spinal Cord Injury in Rats. PLoS ONE 7:e50391. https://doi.org/10.1371/journal.pone.0050391. (PMID: 10.1371/journal.pone.0050391232097323507692)
Kircik LH (2010) Doxycycline and minocycline for the management of acne: a review of efficacy and safety with emphasis on clinical implications. J Drugs Dermatol 9:1407–1411. (PMID: 21061764)
Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R et al (2005) Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 3:173–181. https://doi.org/10.3171/spi.2005.3.3.0173. (PMID: 10.3171/spi.2005.3.3.017316235699)
Kobayashi T, Mori Y (1998) Ca2+ channel antagonists and neuroprotection from cerebral ischemia. Eur J Pharmacol 363:1–15. https://doi.org/10.1016/s0014-2999(98)00774-2. (PMID: 10.1016/s0014-2999(98)00774-29877076)
Koc RK, Akdemir H, Karakücük EI, Öktem IS, Menkü A (1999) Effect of methylprednisolone, tirilazad mesylate and vitamin E on lipid peroxidation after experimental spinal cord injury. Spinal Cord 37:29–32. https://doi.org/10.1038/sj.sc.3100732. (PMID: 10.1038/sj.sc.310073210025692)
Koda M, Nishio Y, Kamada T, Someya Y, Okawa A, Mori C et al (2007) Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice. Brain Res 1149:223–231. https://doi.org/10.1016/j.brainres.2007.02.058. (PMID: 10.1016/j.brainres.2007.02.05817391650)
Lamarche J, Mailhot G (2016) Vitamin D and spinal cord injury: should we care? Spinal Cord 54:1060–1075. https://doi.org/10.1038/sc.2016.131. (PMID: 10.1038/sc.2016.13127645263)
Lammertse DP, Jones LAT, Charlifue SB, Kirshblum SC, Apple DF, Ragnarsson KT et al (2012) Autologous incubated macrophage therapy in acute, complete spinal cord injury: results of the phase 2 randomized controlled multicenter trial. Spinal Cord 50:661–671. https://doi.org/10.1038/sc.2012.39. (PMID: 10.1038/sc.2012.3922525310)
Lauria G, Campanella A, Filippini G, Martini A, Penza P, Maggi L et al (2009) Erythropoietin in amyotrophic lateral sclerosis: a pilot, randomized, double-blind, placebo-controlled study of safety and tolerability. Amyotroph Lateral Scler 10:410–415. https://doi.org/10.3109/17482960902995246. (PMID: 10.3109/1748296090299524619922132)
Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418. https://doi.org/10.1016/j.tibs.2015.04.005. (PMID: 10.1016/j.tibs.2015.04.00526024958)
Leijdesdorff HA, Legué J, Krijnen P, Rhemrev S, Kleinveld S, Schipper IB (2021) Traumatic brain injury and alcohol intoxication: effects on injury patterns and short-term outcome. Eur J Trauma Emerg Surg 47:2065–2072. https://doi.org/10.1007/s00068-020-01381-6. (PMID: 10.1007/s00068-020-01381-632377922)
Lindh I, Hognert H, Milsom I (2016) The changing pattern of contraceptive use and pregnancies in four generations of young women. Acta Obstet Gynecol Scand 95:1264–1272. https://doi.org/10.1111/aogs.13003. (PMID: 10.1111/aogs.1300327538740)
Lingappan K (2018) NF-κB in Oxidative Stress. Curr Opin Toxicol 7:81–86. https://doi.org/10.1016/j.cotox.2017.11.002. (PMID: 10.1016/j.cotox.2017.11.00229862377)
Luo M, Li YQ, Lu YF, Wu Y, Liu R, Zheng YR et al (2021) Exploring the potential of RhoA inhibitors to improve exercise-recoverable spinal cord injury: A systematic review and meta-analysis. J Chem Neuroanat 111:101879. https://doi.org/10.1016/j.jchemneu.2020.101879. (PMID: 10.1016/j.jchemneu.2020.10187933197553)
Ma R, Hu J, Huang C, Wang M, Xiang J, Li G (2014) JAK2/STAT5/Bcl-xL signalling is essential for erythropoietin-mediated protection against apoptosis induced in PC12 cells by the amyloid β−peptide Aβ25–35. Br J Pharmacol 171:3234–3245. https://doi.org/10.1111/bph.12672. (PMID: 10.1111/bph.12672245976134080977)
Magistretti PJ, Geisler FH, Schneider JS, Li PA, Fiumelli H, Sipione S (2019) Gangliosides: Treatment Avenues in Neurodegenerative Disease. Front Neurol 10:859. https://doi.org/10.3389/fneur.2019.00859. (PMID: 10.3389/fneur.2019.00859314477716691137)
Martins AM, Marto JM, Johnson JL, Graber EM (2021) A Review of Systemic Minocycline Side Effects and Topical Minocycline as a Safer Alternative for Treating Acne and Rosacea. Antibiotics (Basel) 10:757. https://doi.org/10.3390/antibiotics10070757. (PMID: 10.3390/antibiotics1007075734206485)
Matthews DC, Mao X, Dowd K, Tsakanikas D, Jiang CS, Meuser C et al (2021) Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer’s disease. Brain 144:3742–3755. https://doi.org/10.1093/brain/awab222. (PMID: 10.1093/brain/awab222341458808719848)
McGuinness LA, Higgins JPT (2021) Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 12:55–61. https://doi.org/10.1002/JRSM.1411. (PMID: 10.1002/JRSM.141132336025)
Meshkini A, Sarpoolaki MK, Vafaei A, Mirzaei F, Badripour A, Rafiei E et al (2023) The efficacy of intrathecal methyl-prednisolone for acute spinal cord injury: A pilot study. Heliyon 9:e15548. https://doi.org/10.1016/j.heliyon.2023.e15548. (PMID: 10.1016/j.heliyon.2023.e155483712834910148034)
Mocchetti I (2005) Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci 62:2283–2294. https://doi.org/10.1007/s00018-005-5188-y. (PMID: 10.1007/s00018-005-5188-y16158191)
Mohapatra A, Seldon T, venkitaswamy lavanya, Mary F, chandrashekar kirubhananda, Venkatachalam S. Naloxone, a mu opioid antagonist’s effect on spinal cord contusion injury rat model. 2014. https://doi.org/10.13140/RG.2.1.3223.0485.
Moskal N, Riccio V, Bashkurov M, Taddese R, Datti A, Lewis PN et al (2020) ROCK inhibitors upregulate the neuroprotective Parkin-mediated mitophagy pathway. Nat Commun 11:88. https://doi.org/10.1038/s41467-019-13781-3. (PMID: 10.1038/s41467-019-13781-3319004026941965)
Mouchemore KA, Anderson RL (2021) Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol 54:101512. https://doi.org/10.1016/j.smim.2021.101512. (PMID: 10.1016/j.smim.2021.10151234763974)
Naderi Y, Sabetkasaei M, Parvardeh S, Moini ZT (2017) Neuroprotective effects of pretreatment with minocycline on memory impairment following cerebral ischemia in rats. Behav Pharmacol 28:214–222. https://doi.org/10.1097/FBP.0000000000000297. (PMID: 10.1097/FBP.000000000000029728257293)
Nekoui A, Tresierra VD, Abdolmohammadi S, Shedid D, Blaise G (2015) Neuroprotective Effect of Erythropoietin in Postoperation Cervical Spinal Cord Injury: Case Report and Review. Anesth Pain Med 5:28849. https://doi.org/10.5812/aapm.28849. (PMID: 10.5812/aapm.28849)
Nishio Y, Koda M, Kamada T, Someya Y, Kadota R, Mannoji C et al (2007) Granulocyte Colony-Stimulating Factor Attenuates Neuronal Death and Promotes Functional Recovery After Spinal Cord Injury in Mice. J Neuropathol Exp Neurol 66:724–731. https://doi.org/10.1097/nen.0b013e3181257176. (PMID: 10.1097/nen.0b013e318125717617882016)
Onyango IG, Tuttle JB, Bennett JP (2005) Brain-derived growth factor and glial cell line-derived growth factor use distinct intracellular signaling pathways to protect PD cybrids from H2O2-induced neuronal death. Neurobiol Dis 20:141–154. https://doi.org/10.1016/j.nbd.2005.02.009. (PMID: 10.1016/j.nbd.2005.02.00916137575)
Osada T, Watanabe M, Hasuo A, Imai M, Suyama K, Sakai D et al (2010) Efficacy of the coadministration of granulocyte colony-stimulating factor and stem cell factor in the activation of intrinsic cells after spinal cord injury in mice. J Neurosurg Spine 13:516–523. https://doi.org/10.3171/2010.4.SPINE09973. (PMID: 10.3171/2010.4.SPINE0997320887150)
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71. (PMID: 10.1136/bmj.n71337820578005924)
Palmano K, Rowan A, Guillermo R, Guan J, McJarrow P (2015) The role of gangliosides in neurodevelopment. Nutrients 7:3891–3913. https://doi.org/10.3390/nu7053891. (PMID: 10.3390/nu7053891260073384446785)
Pointillart V, Petitjean ME, Wiart L, Vital JM, Lassié P, Thicoipé M et al (2000) Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 38:71–76. https://doi.org/10.1038/sj.sc.3100962. (PMID: 10.1038/sj.sc.310096210762178)
Ponce LL, Navarro JC, Ahmed O, Robertson CS (2013) Erythropoietin neuroprotection with traumatic brain injury. Pathophysiology 20:31–38. https://doi.org/10.1016/j.pathophys.2012.02.005. (PMID: 10.1016/j.pathophys.2012.02.00522421507)
Prendergast MR, Saxe JM, Ledgerwood AM, Lucas CE, Lucas WF (1994) Massive steroids do not reduce the zone of injury after penetrating spinal cord injury. J Trauma 37:576–579. https://doi.org/10.1097/00005373-199410000-00009. (PMID: 10.1097/00005373-199410000-000097932887)
Relja B, Menke J, Wagner N, Auner B, Voth M, Nau C et al (2016) Effects of positive blood alcohol concentration on outcome and systemic interleukin-6 in major trauma patients. Injury 47:640–645. https://doi.org/10.1016/j.injury.2016.01.016. (PMID: 10.1016/j.injury.2016.01.01626850862)
Robakis T, Williams KE, Nutkiewicz L, Rasgon NL (2019) Hormonal Contraceptives and Mood: Review of the Literature and Implications for Future Research. Curr Psychiatry Rep 21:57. https://doi.org/10.1007/s11920-019-1034-z. (PMID: 10.1007/s11920-019-1034-z31172309)
Robertson SA, Koleva RI, Argetsinger LS, Carter-Su C, Marto JA, Feener EP et al (2009) Regulation of Jak2 Function by Phosphorylation of Tyr317 and Tyr637 during Cytokine Signaling. Mol Cell Biol 29:3367–3378. https://doi.org/10.1128/MCB.00278-09. (PMID: 10.1128/MCB.00278-09193648232698725)
Rosenberg MJ, Waugh MS (1998) Oral contraceptive discontinuation: A prospective evaluation of frequency and reasons. Am J Obstet Gynecol 179:577–582. https://doi.org/10.1016/S0002-9378(98)70047-X. (PMID: 10.1016/S0002-9378(98)70047-X9757954)
Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG (2008) Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 25:E2. https://doi.org/10.3171/FOC.2008.25.11.E2. (PMID: 10.3171/FOC.2008.25.11.E218980476)
Sadeghi-Naini M, Yousefifard M, Ghodsi Z, Azarhomayoun A, Kermanian F, Golpayegani M et al (2023) In-hospital mortality rate in subaxial cervical spinal cord injury patients: a systematic review and meta-analysis. Acta Neurochir (Wien). https://doi.org/10.1007/s00701-023-05720-5. (PMID: 10.1007/s00701-023-05720-537480505)
Saito F, Nakatani T, Iwase M, Maeda Y, Murao Y, Suzuki Y et al (2012) Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci 30:127–136. https://doi.org/10.3233/RNN-2011-0629. (PMID: 10.3233/RNN-2011-062922232031)
Sakanaka M, Wen T-C, Matsuda S, Masuda S, Morishita E, Nagao M et al (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci 95:4635–4640. https://doi.org/10.1073/pnas.95.8.4635. (PMID: 10.1073/pnas.95.8.4635953979022542)
Sayer FT, Kronvall E, Nilsson OG (2006) Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature. Spine J 6:335–343. https://doi.org/10.1016/j.spinee.2005.11.001. (PMID: 10.1016/j.spinee.2005.11.00116651231)
Schaffir J, Worly BL, Gur TL (2016) Combined hormonal contraception and its effects on mood: a critical review. Eur J Contracept Reprod Health Care 21:347–355. https://doi.org/10.1080/13625187.2016.1217327. (PMID: 10.1080/13625187.2016.121732727636867)
Segebladh B, Borgström A, Odlind V, Bixo M, Sundström-Poromaa I (2009) Prevalence of psychiatric disorders and premenstrual dysphoric symptoms in patients with experience of adverse mood during treatment with combined oral contraceptives. Contraception 79:50–55. https://doi.org/10.1016/j.contraception.2008.08.001. (PMID: 10.1016/j.contraception.2008.08.00119041441)
Shiono S, Sun H, Batabyal T, Labuz A, Williamson J, Kapur J et al (2021) Limbic progesterone receptor activity enhances neuronal excitability and seizures. Epilepsia 62:1946–1959. https://doi.org/10.1111/epi.16970. (PMID: 10.1111/epi.16970341648108349834)
Skouby SO (2010) Contraceptive use and behavior in the 21st century: a comprehensive study across five European countries. Eur J Contracept Reprod Health Care 15:S42–S53. https://doi.org/10.3109/13625187.2010.533002. (PMID: 10.3109/13625187.2010.53300221091166)
Stein DM, Pineda JA, Roddy V, Knight WA (2015) Emergency Neurological Life Support: Traumatic Spine Injury. Neurocrit Care 23:155–164. https://doi.org/10.1007/s12028-015-0169-y. (PMID: 10.1007/s12028-015-0169-y)
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898. (PMID: 10.1136/bmj.l489831462531)
Takahashi H, Yamazaki M, Okawa A, Sakuma T, Kato K, Hashimoto M et al (2012) Neuroprotective therapy using granulocyte colony-stimulating factor for acute spinal cord injury: a phase I/IIa clinical trial. Eur Spine J 21:2580–2587. https://doi.org/10.1007/s00586-012-2213-3. (PMID: 10.1007/s00586-012-2213-3223918673508205)
Tallarico RT, Pizzi MA, Freeman WD (2018) Investigational drugs for vasospasm after subarachnoid hemorrhage. Expert Opin Investig Drugs 27:313–324. https://doi.org/10.1080/13543784.2018.1460353. (PMID: 10.1080/13543784.2018.146035329600883)
Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I et al (2015) Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj 29:1165–1174. https://doi.org/10.3109/02699052.2015.1035330. (PMID: 10.3109/02699052.2015.1035330260830484894830)
Tao J-W, Fan X, Zhou J-Y, Huo L-Y, Mo Y-J, Bai H-Z et al (2023) Granulocyte colony-stimulating factor effects on neurological and motor function in animals with spinal cord injury: a systematic review and meta-analysis. Front Neurosci 17:1168764. https://doi.org/10.3389/fnins.2023.1168764. (PMID: 10.3389/fnins.2023.11687643744927410338098)
Theyab A, Algahtani M, Alsharif KF, Hawsawi YM, Alghamdi A, Alghamdi A et al (2021) New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. Hematology 26:628–636. https://doi.org/10.1080/16078454.2021.1965725. (PMID: 10.1080/16078454.2021.196572534494505)
Torelli AG, Cristante AF, de Barros-Filho TEP, Dos Santos GB, Morena BC, Correia FF et al (2022) Effects of ganglioside GM1 and erythropoietin on spinal cord injury in mice: Functional and immunohistochemical assessments. Clinics (Sao Paulo) 77:100006. https://doi.org/10.1016/j.clinsp.2022.100006. (PMID: 10.1016/j.clinsp.2022.10000635193085)
Urbani A, Belluzzi O (2000) Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 12:3567–3574. https://doi.org/10.1046/j.1460-9568.2000.00242.x. (PMID: 10.1046/j.1460-9568.2000.00242.x11029626)
Urdzíková L, Jendelová P, Glogarová K, Burian M, Hájek M, Syková E (2006) Transplantation of Bone Marrow Stem Cells as well as Mobilization by Granulocyte-Colony Stimulating Factor Promotes Recovery after Spinal Cord Injury in Rats. J Neurotrauma 23:1379–1391. https://doi.org/10.1089/neu.2006.23.1379. (PMID: 10.1089/neu.2006.23.137916958589)
Volovetz J, Roach MJ, Stampas A, Nemunaitis G, Kelly ML (2020) Blood Alcohol Concentration Is Associated With Improved AIS Motor Score After Spinal Cord Injury. Top Spinal Cord Inj Rehabil 26:261–267. https://doi.org/10.46292/sci20-00014. (PMID: 10.46292/sci20-0001433536731)
Wilson JR, Fehlings MG (2014) Riluzole for acute traumatic spinal cord injury: a promising neuroprotective treatment strategy. World Neurosurg 81:825–829. https://doi.org/10.1016/j.wneu.2013.01.001. (PMID: 10.1016/j.wneu.2013.01.00123295632)
Wilson JR, Cadotte DW, Fehlings MG (2012) Clinical predictors of neurological outcome, functional status, and survival after traumatic spinal cord injury: a systematic review. J Neurosurg Spine 17:11–26. https://doi.org/10.3171/2012.4.AOSPINE1245. (PMID: 10.3171/2012.4.AOSPINE124522985366)
Worly BL, Gur TL, Schaffir J (2018) The relationship between progestin hormonal contraception and depression: a systematic review. Contraception 97:478–489. https://doi.org/10.1016/j.contraception.2018.01.010. (PMID: 10.1016/j.contraception.2018.01.01029496297)
Xiao B-G, Lu C-Z, Link H (2007) Cell biology and clinical promise of G-CSF: immunomodulation and neuroprotection. J Cell Mol Med 11:1272–1290. https://doi.org/10.1111/j.1582-4934.2007.00101.x. (PMID: 10.1111/j.1582-4934.2007.00101.x182057014401293)
Xu D, Yang L, Li Y, Sun Y (2015) Clinical study of ganglioside (GM) combined with methylprednisolone (MP) for early acute spinal injury. Pak J Pharm Sci 28:701–704. (PMID: 25796161)
Zhang Y, Yao M, Zhu K, Xue R, Xu J, Cui X, et al (2022) Neurological recovery and antioxidant effect of erythropoietin for spinal cord injury: A systematic review and meta-analysis. Frontiers in Neurology. 13. https://doi.org/10.3389/fneur.2022.925696.
Zhao Y, Haney MJ, Jin YS, Uvarov O, Vinod N, Lee YZ et al (2019) GDNF-expressing macrophages restore motor functions at a severe late-stage, and produce long-term neuroprotective effects at an early-stage of Parkinson’s disease in transgenic Parkin Q311X(A) mice. J Control Release 315:139–149. https://doi.org/10.1016/j.jconrel.2019.10.027. (PMID: 10.1016/j.jconrel.2019.10.027316780956927551)
Zhou L, Tian Z, Yao M, Chen X, Song Y, Ye J et al (2019) Riluzole promotes neurological function recovery and inhibits damage extension in rats following spinal cord injury: a meta-analysis and systematic review. J Neurochem 150:6–27. https://doi.org/10.1111/jnc.14686. (PMID: 10.1111/jnc.1468630786027)
Zornow MH, Prough DS (1996) Neuroprotective properties of calcium-channel blockers. New Horiz 4:107–114. (PMID: 8689265)
فهرسة مساهمة: Keywords: Drugs; Efficacy; Neuroprotection; Outcomes; Randomized trials; Spinal cord injury
المشرفين على المادة: 0 (Neuroprotective Agents)
7LJ087RS6F (Riluzole)
0 (Blood Alcohol Content)
4G7DS2Q64Y (Progesterone)
X4W7ZR7023 (Methylprednisolone)
11096-26-7 (Erythropoietin)
143011-72-7 (Granulocyte Colony-Stimulating Factor)
1406-16-2 (Vitamin D)
تواريخ الأحداث: Date Created: 20240328 Date Completed: 20240401 Latest Revision: 20240401
رمز التحديث: 20240401
DOI: 10.1007/s10143-024-02372-6
PMID: 38546884
قاعدة البيانات: MEDLINE