دورية أكاديمية

Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet.

التفاصيل البيبلوغرافية
العنوان: Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet.
المؤلفون: Wu H; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Chen L; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Malinowski P; Department of Physics, University of Washington, Seattle, WA, USA., Jang BG; Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA.; Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, Republic of Korea., Deng Q; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA., Scott K; Department of Physics, Yale University, New Haven, CT, USA.; Energy Sciences Institute, Yale University, West Haven, CT, USA.; Department of Physics and Astronomy, University of California, Davis, CA, USA.; Department of Applied Physics, Yale University, New Haven, CT, USA., Huang J; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Ruff JPC; Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA., He Y; Department of Physics, University of California, Berkeley, CA, USA., Chen X; Department of Physics, University of California, Berkeley, CA, USA., Hu C; Department of Physics, University of Washington, Seattle, WA, USA.; Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA., Yue Z; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Oh JS; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA.; Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA., Teng X; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Guo Y; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Klemm M; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Shi C; Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA., Shi Y; Department of Physics, University of Washington, Seattle, WA, USA., Setty C; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Werner T; Department of Applied Physics, Yale University, New Haven, CT, USA., Hashimoto M; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA., Lu D; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA., Yilmaz T; National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, USA., Vescovo E; National Synchrotron Light Source II, Brookhaven National Lab, Upton, NY, USA., Mo SK; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Fedorov A; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Denlinger JD; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Xie Y; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Gao B; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Kono J; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA.; Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.; Departments of Electrical and Computer Engineering, Rice University, Houston, TX, USA., Dai P; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Han Y; Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA., Xu X; Department of Physics, University of Washington, Seattle, WA, USA.; Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA., Birgeneau RJ; Department of Physics, University of California, Berkeley, CA, USA.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA., Zhu JX; Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA., da Silva Neto EH; Department of Physics, Yale University, New Haven, CT, USA.; Energy Sciences Institute, Yale University, West Haven, CT, USA.; Department of Physics and Astronomy, University of California, Davis, CA, USA.; Department of Applied Physics, Yale University, New Haven, CT, USA., Wu L; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA., Chu JH; Department of Physics, University of Washington, Seattle, WA, USA., Si Q; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA., Yi M; Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, USA. mingyi@rice.edu.
المصدر: Nature communications [Nat Commun] 2024 Mar 28; Vol. 15 (1), pp. 2739. Date of Electronic Publication: 2024 Mar 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مستخلص: Non-volatile phase-change memory devices utilize local heating to toggle between crystalline and amorphous states with distinct electrical properties. Expanding on this kind of switching to two topologically distinct phases requires controlled non-volatile switching between two crystalline phases with distinct symmetries. Here, we report the observation of reversible and non-volatile switching between two stable and closely related crystal structures, with remarkably distinct electronic structures, in the near-room-temperature van der Waals ferromagnet Fe 5-δ GeTe 2 . We show that the switching is enabled by the ordering and disordering of Fe site vacancies that results in distinct crystalline symmetries of the two phases, which can be controlled by a thermal annealing and quenching method. The two phases are distinguished by the presence of topological nodal lines due to the preserved global inversion symmetry in the site-disordered phase, flat bands resulting from quantum destructive interference on a bipartite lattice, and broken inversion symmetry in the site-ordered phase.
(© 2024. The Author(s).)
References: Nature. 2022 Mar;603(7899):41-51. (PMID: 35236973)
Nat Mater. 2018 Sep;17(9):794-799. (PMID: 30013056)
Nature. 2021 Jul;595(7866):239-244. (PMID: 34234338)
Nature. 2018 Mar 29;555(7698):638-642. (PMID: 29555992)
Science. 2010 Aug 13;329(5993):824-6. (PMID: 20705856)
Sci Adv. 2017 May 31;3(5):e1602510. (PMID: 28580420)
Nature. 2017 Jun 8;546(7657):265-269. (PMID: 28445468)
Nat Nanotechnol. 2022 Mar;17(3):256-261. (PMID: 35058657)
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. (PMID: 10062328)
Science. 2022 Jan 07;375(6576):76-81. (PMID: 34855511)
Nat Commun. 2020 Aug 10;11(1):4004. (PMID: 32778669)
Nat Commun. 2013;4:1897. (PMID: 23695691)
Nat Mater. 2007 Nov;6(11):824-32. (PMID: 17972937)
Sci Adv. 2020 Sep 4;6(36):. (PMID: 32917619)
Nat Mater. 2020 Feb;19(2):163-169. (PMID: 31819211)
Nat Mater. 2022 Dec;21(12):1373-1378. (PMID: 36109674)
Phys Rev Lett. 2013 Oct 11;111(15):155701. (PMID: 24160613)
Nat Nanotechnol. 2011 Jul 03;6(8):501-5. (PMID: 21725305)
Adv Mater. 2020 Dec;32(48):e2005228. (PMID: 33118243)
Nat Mater. 2004 Oct;3(10):703-8. (PMID: 15359344)
Nature. 2019 Feb;566(7745):475-479. (PMID: 30814713)
Nat Nanotechnol. 2021 Jun;16(6):667-672. (PMID: 33875869)
Science. 2023 Jul 21;381(6655):325-330. (PMID: 37347950)
ACS Nano. 2022 Jul 26;16(7):10545-10553. (PMID: 35802911)
Sci Adv. 2020 Jan 17;6(3):eaay8912. (PMID: 32010775)
Nat Nanotechnol. 2015 May;10(5):407-11. (PMID: 25895004)
Nature. 2022 Mar;603(7903):824-828. (PMID: 35355002)
Nature. 2022 Jul;607(7918):276-280. (PMID: 35831597)
Sci Adv. 2019 Aug 09;5(8):eaav9771. (PMID: 31448327)
Nature. 2022 Nov;611(7937):682-687. (PMID: 36418450)
Nat Mater. 2011 Oct;10(10):733-6. (PMID: 21857676)
Nat Commun. 2023 Jun 23;14(1):3744. (PMID: 37353526)
Nature. 2019 Feb;566(7745):486-489. (PMID: 30814709)
ACS Nano. 2019 Apr 23;13(4):4436-4442. (PMID: 30865426)
Adv Mater. 2022 Mar;34(11):e2108637. (PMID: 35048455)
Nature. 2010 Aug 12;466(7308):841-4. (PMID: 20703301)
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186. (PMID: 9984901)
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25530-25534. (PMID: 31801879)
Sci Rep. 2020 Sep 18;10(1):15345. (PMID: 32948794)
Nature. 2019 Feb;566(7745):480-485. (PMID: 30814710)
Nature. 2020 Oct;586(7831):702-707. (PMID: 33116291)
Adv Mater. 2023 Apr;35(17):e2212087. (PMID: 36780298)
Nat Nanotechnol. 2023 Aug;18(8):854-860. (PMID: 37169899)
Science. 2020 Feb 21;367(6480):895-900. (PMID: 31974160)
Nature. 2018 Oct;562(7725):91-95. (PMID: 30209398)
Nature. 2018 Nov;563(7729):47-52. (PMID: 30382199)
Phys Rev Lett. 2022 May 27;128(21):217203. (PMID: 35687434)
Nano Lett. 2020 Feb 12;20(2):868-873. (PMID: 31869236)
Science. 2019 Feb 15;363(6428):. (PMID: 30765537)
Nature. 2018 Nov;563(7729):94-99. (PMID: 30349002)
Nat Commun. 2018 Oct 31;9(1):4535. (PMID: 30382088)
Science. 2023 May 26;380(6647):841-846. (PMID: 37228203)
Nature. 2017 Jun 7;546(7657):270-273. (PMID: 28593970)
Nature. 2017 Oct 26;550(7677):487-491. (PMID: 29019982)
Nat Commun. 2022 May 31;13(1):3035. (PMID: 35641499)
Nat Mater. 2018 May;17(5):406-410. (PMID: 29531370)
Sci Adv. 2022 Mar 25;8(12):eabm7103. (PMID: 35319983)
J Phys Chem Lett. 2023 Jun 15;14(23):5456-5465. (PMID: 37288804)
Nat Commun. 2023 Jul 19;14(1):4328. (PMID: 37468516)
معلومات مُعتمدة: DE-SC0021421 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy)
تواريخ الأحداث: Date Created: 20240329 Latest Revision: 20240331
رمز التحديث: 20240331
مُعرف محوري في PubMed: PMC10978849
DOI: 10.1038/s41467-024-46862-z
PMID: 38548765
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-46862-z