دورية أكاديمية

A reference-grade genome of the xerophyte Ammopiptanthus mongolicus sheds light on its evolution history in legumes and drought-tolerance mechanisms.

التفاصيل البيبلوغرافية
العنوان: A reference-grade genome of the xerophyte Ammopiptanthus mongolicus sheds light on its evolution history in legumes and drought-tolerance mechanisms.
المؤلفون: Feng L; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China; Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China., Teng F; BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China., Li N; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China., Zhang JC; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China., Zhang BJ; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China., Tsai SN; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China., Yue XL; School of Life Sciences and Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730030, China., Gu LF; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China., Meng GH; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China., Deng TQ; BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China., Tong SW; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China., Wang CM; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China., Li Y; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China., Shi W; BGI-Shenzhen Tech Co., Ltd., Beishan Industrial Zone, Yantian District, Shenzhen 518083, China., Zeng YL; State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China., Jiang YM; Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China., Yu W; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China., Ngai SM; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China., An LZ; School of Life Sciences and Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730030, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China. Electronic address: lizhean@lzu.edu.cn., Lam HM; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China. Electronic address: honming@cuhk.edu.hk., He JX; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China. Electronic address: jxhe@cuhk.edu.hk.
المصدر: Plant communications [Plant Commun] 2024 Jul 08; Vol. 5 (7), pp. 100891. Date of Electronic Publication: 2024 Apr 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published by the Plant Communications Shanghai Office in association with Cell Press, an imprint of Elsevier Inc Country of Publication: China NLM ID: 101769147 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2590-3462 (Electronic) Linking ISSN: 25903462 NLM ISO Abbreviation: Plant Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Shanghai] : Published by the Plant Communications Shanghai Office in association with Cell Press, an imprint of Elsevier Inc., [2020]-
مواضيع طبية MeSH: Genome, Plant* , Droughts* , Fabaceae*/genetics , Fabaceae*/physiology, Stress, Physiological/genetics ; Evolution, Molecular ; Gene Expression Regulation, Plant ; Phylogeny
مستخلص: Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.
(Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
References: Plant Biotechnol J. 2014 May;12(4):468-79. (PMID: 24393105)
PLoS One. 2015 Aug 27;10(8):e0136495. (PMID: 26313687)
Front Plant Sci. 2017 Apr 28;8:621. (PMID: 28503179)
Prog Lipid Res. 2013 Jan;52(1):110-29. (PMID: 23103356)
Plant Biotechnol J. 2010 May 1;8(4):476-88. (PMID: 20233336)
Genome Biol. 2008 Jan 11;9(1):R7. (PMID: 18190707)
BMC Genomics. 2014 Aug 09;15:671. (PMID: 25108399)
Bioinformatics. 2006 Jul 1;22(13):1658-9. (PMID: 16731699)
Plant Physiol. 2024 Apr 30;195(1):617-639. (PMID: 38285060)
Nat Protoc. 2016 Sep;11(9):1650-67. (PMID: 27560171)
Nature. 2007 Sep 27;449(7161):463-7. (PMID: 17721507)
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. (PMID: 29722887)
Plant J. 2017 Apr;90(1):17-36. (PMID: 27995695)
Gigascience. 2018 Jul 1;7(7):. (PMID: 29917074)
Plant Physiol. 2018 Feb;176(2):1410-1422. (PMID: 29233850)
Methods Mol Biol. 2019;1962:1-14. (PMID: 31020551)
Nature. 2011 Nov 16;480(7378):520-4. (PMID: 22089132)
Trends Plant Sci. 2018 Apr;23(4):311-323. (PMID: 29428350)
Antioxidants (Basel). 2020 May 25;9(5):. (PMID: 32466087)
Plant Physiol. 2012 Jun;159(2):682-95. (PMID: 22467798)
BMC Genomics. 2016 May 26;17:402. (PMID: 27229309)
Nucleic Acids Res. 2012 Apr;40(7):e49. (PMID: 22217600)
Plant Commun. 2021 Nov 08;3(2):100263. (PMID: 35529952)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
Science. 2017 Apr 7;356(6333):92-95. (PMID: 28336562)
Nucleic Acids Res. 2016 May 19;44(9):e89. (PMID: 26893356)
Nature. 2010 Jan 14;463(7278):178-83. (PMID: 20075913)
BMC Genomics. 2012 Jun 21;13:266. (PMID: 22721448)
Nat Genet. 2019 Sep;51(9):1411-1422. (PMID: 31477930)
Nat Commun. 2014 Oct 28;5:5315. (PMID: 25350882)
Genomics Proteomics Bioinformatics. 2023 Jun;21(3):455-469. (PMID: 36775057)
Nat Commun. 2019 Jan 25;10(1):464. (PMID: 30683940)
BMC Genomics. 2013 Jul 18;14:488. (PMID: 23865740)
Front Plant Sci. 2018 Feb 08;9:138. (PMID: 29479365)
Sci Rep. 2016 Oct 04;6:34601. (PMID: 27698373)
Front Plant Sci. 2020 May 20;11:644. (PMID: 32508870)
Nat Protoc. 2012 Mar 01;7(3):562-78. (PMID: 22383036)
Nat Commun. 2020 Feb 26;11(1):1069. (PMID: 32103018)
J Exp Bot. 2020 May 30;71(10):3126-3141. (PMID: 31985780)
Bioinformatics. 2010 Oct 15;26(20):2509-16. (PMID: 20736338)
Bioinformatics. 2005 Jun;21 Suppl 1:i351-8. (PMID: 15961478)
Curr Opin Plant Biol. 2013 Oct;16(5):554-60. (PMID: 24012247)
Plant Cell. 2002;14 Suppl:S165-83. (PMID: 12045276)
New Phytol. 2015 Jul;207(1):196-210. (PMID: 25711503)
Microb Ecol. 2016 Jul;72(1):231-239. (PMID: 27079453)
Front Plant Sci. 2022 Nov 30;13:1042084. (PMID: 36531407)
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12. (PMID: 16845082)
Nat Commun. 2021 Oct 15;12(1):6030. (PMID: 34654815)
Plant J. 2010 Aug;63(4):584-98. (PMID: 20525006)
Nucleic Acids Res. 2003 Oct 1;31(19):5654-66. (PMID: 14500829)
Genomics Proteomics Bioinformatics. 2022 Jun;20(3):536-540. (PMID: 34990803)
BMC Bioinformatics. 2008 Jan 14;9:18. (PMID: 18194517)
Plant Physiol. 2017 May;174(1):284-300. (PMID: 28325848)
Genome Res. 2017 May;27(5):722-736. (PMID: 28298431)
Plant Biotechnol J. 2017 Mar;15(3):318-330. (PMID: 27557478)
Nat Protoc. 2006;1(2):641-6. (PMID: 17406292)
Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14. (PMID: 19274634)
J Exp Bot. 2019 Jan 1;70(1):41-54. (PMID: 30325439)
Nat Plants. 2021 Jun;7(6):748-756. (PMID: 34135482)
PLoS One. 2015 Apr 29;10(4):e0124382. (PMID: 25923822)
Nat Methods. 2015 Jan;12(1):59-60. (PMID: 25402007)
Ann Bot. 2005 Apr;95(5):843-51. (PMID: 15701663)
Nat Commun. 2019 Mar 14;10(1):1216. (PMID: 30872580)
Ann Bot. 2023 Apr 28;131(4):723-736. (PMID: 36848247)
Nat Genet. 2019 May;51(5):877-884. (PMID: 31043755)
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
Plant Cell. 2021 Jul 2;33(5):1430-1446. (PMID: 33730165)
Nucleic Acids Res. 2002 Apr 1;30(7):1575-84. (PMID: 11917018)
Nat Methods. 2015 Apr;12(4):357-60. (PMID: 25751142)
Genetics. 2005 Oct;171(2):741-52. (PMID: 16085698)
Front Plant Sci. 2023 Mar 01;14:1034393. (PMID: 36938058)
PLoS One. 2014 Nov 19;9(11):e112963. (PMID: 25409509)
Mol Biol Evol. 2022 Mar 2;39(3):. (PMID: 35176153)
New Phytol. 2020 Mar;225(5):2094-2107. (PMID: 31618451)
Nat Genet. 2019 May;51(5):865-876. (PMID: 31043757)
Genome Biol. 2015 Dec 01;16:259. (PMID: 26619908)
Nat Genet. 2022 Oct;54(10):1553-1563. (PMID: 36138232)
Plants (Basel). 2020 Aug 04;9(8):. (PMID: 32759884)
Sci Rep. 2022 Jun 23;12(1):10630. (PMID: 35739154)
Bioinformatics. 2002 Mar;18(3):492-3. (PMID: 11934753)
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12):. (PMID: 33723068)
Bioinformatics. 2013 Nov 15;29(22):2933-5. (PMID: 24008419)
BMC Bioinformatics. 2009 Dec 15;10:421. (PMID: 20003500)
Mob DNA. 2019 Jan 03;10:1. (PMID: 30622655)
J Lipid Res. 2018 Aug;59(8):1374-1382. (PMID: 29555656)
BMC Plant Biol. 2013 Jun 05;13:88. (PMID: 23734749)
فهرسة مساهمة: Keywords: Ammopiptanthus mongolicus; cuticular wax; drought tolerance; ethylene; genome evolution; genome sequencing
تواريخ الأحداث: Date Created: 20240402 Date Completed: 20240709 Latest Revision: 20240801
رمز التحديث: 20240801
مُعرف محوري في PubMed: PMC11287142
DOI: 10.1016/j.xplc.2024.100891
PMID: 38561965
قاعدة البيانات: MEDLINE
الوصف
تدمد:2590-3462
DOI:10.1016/j.xplc.2024.100891