دورية أكاديمية

Effects of plant taxonomic position on soil nematode communities in Antarctica.

التفاصيل البيبلوغرافية
العنوان: Effects of plant taxonomic position on soil nematode communities in Antarctica.
المؤلفون: Zhang A; Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China.; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China., Song H; Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China., Liu Z; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China., Cui H; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China., Ding H; Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, China., Chen S; Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China., Xiao S; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China., An L; Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China., Cardoso P; Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland.
المصدر: Conservation biology : the journal of the Society for Conservation Biology [Conserv Biol] 2024 Aug; Vol. 38 (4), pp. e14264. Date of Electronic Publication: 2024 Apr 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology Country of Publication: United States NLM ID: 9882301 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1523-1739 (Electronic) Linking ISSN: 08888892 NLM ISO Abbreviation: Conserv Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology
Original Publication: Boston, Mass. : Blackwell Scientific Publications,
مواضيع طبية MeSH: Nematoda*/physiology , Soil* , Biodiversity* , Plants*/classification, Animals ; Antarctic Regions
مستخلص: Antarctica terrestrial ecosystems are facing the most threats from global climate change, which is altering plant composition greatly. These transformations may cause major reshuffling of soil community composition, including functional traits and diversity, and therefore affect ecosystem processes in Antarctica. We used high-throughput sequencing analysis to investigate soil nematodes under 3 dominant plant functional groups (lichens, mosses, and vascular plants) and bare ground in the Antarctic region. We calculated functional diversity of nematodes based on their diet, life histories, and body mass with kernel density n-dimensional hypervolumes. We also calculated taxonomic and functional beta diversity of the nematode communities based on Jaccard dissimilarity. The presence of plants had no significant effect on the taxonomic richness of nematodes but significantly increased nematode functional richness. The presence of plants also significantly decreased taxonomic beta diversity (homogenization). Only mosses and vascular plants decreased nematode functional beta diversity, which was mostly due to a decreased effect of the richness difference component. The presence of plants also increased the effect of deterministic processes potentially because environmental filtering created conditions favorable to nematodes at low trophic levels with short life histories and small body size. Increasing plant cover in the Antarctic due to climate change may lead to increased diversity of nematode species that can use the scarce resources and nematode taxonomic and functional homogenization. In a future under climate change, community restructuring in the region is possible.
(© 2024 Society for Conservation Biology.)
References: Adams, B. J., Bardgett, R. D., Ayres, E., Wall, D. H., Aislabie, J., Bamforth, S., Bargagli, R., Cary, C., Cavacini, P., Connell, L., Convey, P., Fell, J. W., Frati, F., Hogg, I. D., Newsham, K. K., O'Donnell, A., Russell, N., Seppelt, R. D., & Stevens, M. I. (2006). Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 3003–3018. https://doi.org/10.1016/j.soilbio.2006.04.030.
Atala, C., Pertierra, L. R., Aragón, P., Carrasco‐Urra, F., Lavín, P., Gallardo‐Cerda, J., Ricote‐Martínez, N., Torres‐Díaz, C., & Molina‐Montenegro, M. A. (2019). Positive interactions among native and invasive vascular plants in Antarctica: Assessing the “nurse effect” at different spatial scales. Biological Invasions, 21, 2819–2836. https://doi.org/10.1007/s10530‐019‐02016‐7.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48. https://doi.org/10.18637/jss.v067.i01.
Benavent‐González, A., Delgado‐Baquerizo, M., Fernández‐Brun, L., Singh, B. K., Maestre, F. T., & Sancho, L. G. (2018). Identity of plant, lichen and moss species connects with microbial abundance and soil functioning in maritime Antarctica. Plant and Soil, 429, 35–52. https://doi.org/10.1007/s11104‐018‐3721‐7.
Bhaskar, R., Dawson, T. E., & Balvanera, P. (2014). Community assembly and functional diversity along succession post‐management. Functional Ecology, 28, 1256–1265. https://doi.org/10.1111/1365‐2435.12257.
Blonder, B. (2016). Do hypervolumes have holes? The American Naturalist, 187, E93–E105. https://doi.org/10.1086/685444.
Bongers, T. (1990). The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14–19. https://doi.org/10.1007/BF00324627.
Bongers, T., van der Meulen, H., & Korthals, G. (1997). Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology, 6, 195–199. https://doi.org/10.1016/S0929‐1393(96)00136‐9.
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero‐inflated generalized linear mixed modeling. The R Journal, 9, 378–400. https://doi.org/10.32614/RJ‐2017‐066.
Cardoso, P., Guillerme, T., Mammola, S., Matthews, T. J., Rigal, F., Graco‐Roza, C., Stahls, G., & Carvalho, J. C. (2022). Calculating functional diversity metrics using neighbor‐joining trees. bioRxiv. https://doi.org/10.1101/2022.11.27.518065.
Cardoso, P., Rigal, F., & Carvalho, J. C. (2015). BAT—Biodiversity assessment tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods in Ecology and Evolution, 6, 232–236. https://doi.org/10.1111/2041‐210X.12310.
Cardoso, P., Rigal, F., Carvalho, J. C., Fortelius, M., Borges, P. A. V., Podani, J., & Schmera, D. (2014). Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. Journal of Biogeography, 41, 749–761. https://doi.org/10.1111/jbi.12239.
Carvalho, J. C., Cardoso, P., & Gomes, P. (2012). Determining the relative roles of species replacement and species richness differences in generating beta‐diversity patterns. Global Ecology and Biogeography, 21, 760–771. https://doi.org/10.1111/j.1466‐8238.2011.00694.x.
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics, 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560.
Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927–930. https://doi.org/10.1111/j.1654‐1103.2003.tb02228.x.
Ferris, H., Bongers, T., & de Goede, R. G. M. (2001). A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13–29. https://doi.org/10.1016/S0929‐1393(01)00152‐4.
Fitoussi, N., Pen‐Mouratov, S., & Steinberger, Y. (2016). Soil free‐living nematodes as bio‐indicators for assaying the invasive effect of the alien plant Heterotheca subaxillaris in a coastal dune ecosystem. Applied Soil Ecology, 102, 1–9. https://doi.org/10.1016/j.apsoil.2016.02.005.
Franco, A. L. C., Gherardi, L. A., de Tomasel, C. M., Andriuzzi, W. S., Ankrom, K. E., Shaw, E. A., Bach, E. M., Sala, O. E., & Wall, D. H. (2019). Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslands. Proceedings of the National Academy of Sciences of the United States of America, 116, 12883–12888. https://doi.org/10.1073/pnas.1900572116.
Gao, G., Li, H., Shi, Y., Yang, T., Gao, C., Fan, K., Zhang, Y., Zhu, Y., Delgado‐Baquerizo, M., Zheng, H., & Chu, H. (2022). Continental‐scale plant invasions reshuffle the soil microbiome of blue carbon ecosystems. Global Change Biology, 28, 4423–4438. https://doi.org/10.1111/gcb.16211.
Gattoni, K., Gendron, E. M. S., Borgmeier, A., McQueen, J. P., Mullin, P. G., Powers, K., Powers, T. O., & Porazinska, D. L. (2022). Context‐dependent role of abiotic and biotic factors structuring nematode communities along two environmental gradients. Molecular Ecology, 31, 3903–3916. https://doi.org/10.1111/mec.16541.
Geisen, S., Snoek, L. B., Ten Hooven, F. C., Duyts, H., Kostenko, O., Bloem, J., Martens, H., Quist, C. W., Helder, J. A., & Van Der Putten, W. H. (2018). Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods in Ecology and Evolution, 9, 1366–1378. https://doi.org/10.1111/2041‐210X.12999.
Guo, X., Feng, J., Shi, Z., Zhou, X., Yuan, M., Tao, X., Hale, L., Yuan, T., Wang, J., Qin, Y., Zhou, A., Fu, Y., Wu, L., He, Z., Van Nostrand, J. D., Ning, D., Liu, X., Luo, Y., Tiedje, J. M., … Zhou, J. (2018). Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 8, 813–818. https://doi.org/10.1038/s41558‐018‐0254‐2.
Hill, P. W., Farrar, J., Roberts, P., Farrell, M., Grant, H., Newsham, K. K., Hopkins, D. W., Bardgett, R. D., & Jones, D. L. (2011). Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nature Climate Change, 1, 50–53. https://doi.org/10.1038/nclimate1060.
Lamanna, C., Blonder, B., Violle, C., Kraft, N. J. B., Sandel, B., Šímová, I., Donoghue, J. C., Svenning, J.‐C., McGill, B. J., Boyle, B., Buzzard, V., Dolins, S., Jørgensen, P. M., Marcuse‐Kubitza, A., Morueta‐Holme, N., Peet, R. K., Piel, W. H., Regetz, J., Schildhauer, M., … Enquist, B. J. (2014). Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences of the United States of America, 111, 13745–13750. https://doi.org/10.1073/pnas.1317722111.
Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573–579. https://doi.org/10.1111/2041‐210X.12512.
Li, X., Zhu, H., Geisen, S., Bellard, C., Hu, F., Li, H., Chen, X., & Liu, M. (2020). Agriculture erases climate constraints on soil nematode communities across large spatial scales. Global Change Biology, 26, 919–930. https://doi.org/10.1111/gcb.14821.
Liaw, A., & Wiener, M. C. (2007). Classification and regression by randomForest. R News, 2, 18–22.
Madhu, M., & Hatfield, J. L. (2013). Dynamics of plant root growth under increased atmospheric carbon dioxide. Agronomy Journal, 105, 657–669. https://doi.org/10.2134/agronj2013.0018.
Mammola, S., Arnedo, M. A., Fišer, C., Cardoso, P., Dejanaz, A. J., & Isaia, M. (2020). Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders. Functional Ecology, 34, 1064–1077. https://doi.org/10.1111/1365‐2435.13527.
Mammola, S., & Cardoso, P. (2020). Functional diversity metrics using kernel density n‐dimensional hypervolumes. Methods in Ecology and Evolution, 11, 986–995. https://doi.org/10.1111/2041‐210X.13424.
Milcu, A., Allan, E., Roscher, C., Jenkins, T., Meyer, S. T., Flynn, D., Bessler, H., Buscot, F., Engels, C., Gubsch, M., König, S., Lipowsky, A., Loranger, J., Renker, C., Scherber, C., Schmid, B., Thébault, E., Wubet, T., Weisser, W. W., … Eisenhauer, N. (2013). Functionally and phylogenetically diverse plant communities key to soil biota. Ecology, 94, 1878–1885. https://doi.org/10.1890/12‐1936.1.
Molina‐Montenegro, M. A., Ricote‐Martínez, N., Muñoz‐Ramírez, C., Gómez‐González, S., Torres‐Díaz, C., Salgado‐Luarte, C., & Gianoli, E. (2013). Positive interactions between the lichen Usnea antarctica (Parmeliaceae) and the native flora in Maritime Antarctica. Journal of Vegetation Science, 24, 463–472. https://doi.org/10.1111/j.1654‐1103.2012.01480.x.
Molina‐Montenegro, M. A., Torres‐Díaz, C., & Gianoli, E. (2014). Antarctic macrolichen modifies microclimate and facilitates vascular plants in the maritime Antarctica—A reply to Casanova‐Katny et al. (2014). Journal of Vegetation Science, 25, 606–608. https://doi.org/10.1111/jvs.12141.
Naz, B., Liu, Z., Malard, L. A., Ali, I., Song, H., Wang, Y., Li, X., Usman, M., Ali, I., Liu, K., An, L., Xiao, S., & Chen, S. (2023). Dominant plant species play an important role in regulating bacterial antagonism in terrestrial Antarctica. Frontiers in Microbiology, 14, Article 1130321. https://doi.org/10.3389/fmicb.2023.1130321.
Nielsen, U. N., & King, C. K. (2015). Abundance and diversity of soil invertebrates in the Windmill Islands region, East Antarctica. Polar Biology, 38, 1391–1400. https://doi.org/10.1007/s00300‐015‐1703‐2.
Nielsen, U. N., & Wall, D. H. (2013). The future of soil invertebrate communities in polar regions: Different climate change responses in the Arctic and Antarctic? Ecology Letters, 16, 409–419. https://doi.org/10.1111/ele.12058.
Nielsen, U. N., Wall, D. H., Adams, B. J., & Virginia, R. A. (2011). Antarctic nematode communities: Observed and predicted responses to climate change. Polar Biology, 34, 1701–1711. https://doi.org/10.1007/s00300‐011‐1021‐2.
Nielsen, U. N., Wall, D. H., Li, G., Toro, M., Adams, B. J., & Virginia, R. A. (2011). Nematode communities of Byers Peninsula, Livingston Island, maritime Antarctica. Antarctic Science, 23, 349–357. https://doi.org/10.1017/S0954102011000174.
Ning, D., Yuan, M., Wu, L., Zhang, Y., Guo, X., Zhou, X., Yang, Y., Arkin, A. P., Firestone, M. K., & Zhou, J. (2020). A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 11(1), Article 4717, https://doi.org/10.1038/s41467‐020‐18560‐z.
Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741–758. https://doi.org/10.1111/j.1461‐0248.2006.00924.x.
Purschke, O., Schmid, B. C., Sykes, M. T., Poschlod, P., Michalski, S. G., Durka, W., Kühn, I., Winter, M., & Prentice, H. C. (2013). Contrasting changes in taxonomic, phylogenetic and functional diversity during a long‐term succession: Insights into assembly processes. Journal of Ecology, 101, 857–866. https://doi.org/10.1111/1365‐2745.12098.
Ricklefs, R. E. (2012). Species richness and morphological diversity of passerine birds. Proceedings of the National Academy of Sciences of the United States of America, 109, 14482–14487. https://doi.org/10.1073/pnas.1212079109.
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, Article e2584. https://doi.org/10.7717/peerj.2584.
Simmons, B. L., Wall, D. H., Adams, B. J., Ayres, E., Barrett, J. E., & Virginia, R. A. (2009). Long‐term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biology and Biochemistry, 41, 2052–2060. https://doi.org/10.1016/j.soilbio.2009.07.009.
Singh, J., Singh, R. P., & Khare, R. (2018). Influence of climate change on Antarctic flora. Polar Science, 18, 94–101. https://doi.org/10.1016/j.polar.2018.05.006.
Smykla, J., Porazinska, D. L., Iakovenko, N. S., Devetter, M., Drewnik, M., Hii, Y. S., & Emslie, S. D. (2018). Geochemical and biotic factors influencing the diversity and distribution of soil microfauna across ice‐free coastal habitats in Victoria Land, Antarctica. Soil Biology and Biochemistry, 116, 265–276. https://doi.org/10.1016/j.soilbio.2017.10.028.
Soininen, J., Heino, J., & Wang, J. (2018). A meta‐analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography, 27, 96–109. https://doi.org/10.1111/geb.12660.
Stamou, G. P., & Papatheodorou, E. M. (2023). Deterministic versus stochastic control in β‐diversity, abundance and co‐occurrence patterns of a soil nematode assemblage living in a Mediterranean soil. Applied Soil Ecology, 188, Article 104879. https://doi.org/10.1016/j.apsoil.2023.104879.
Stegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W., Murray, C. J., Rockhold, M. L., & Konopka, A. (2013). Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7, 2069–2079. https://doi.org/10.1038/ismej.2013.93.
Sylvain, Z. A., & Wall, D. H. (2011). Linking soil biodiversity and vegetation: Implications for a changing planet. American Journal of Botany, 98, 517–527. https://doi.org/10.3732/ajb.1000305.
Tscherko, D., Hammesfahr, U., Zeltner, G., Kandeler, E., & Böcker, R. (2005). Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic and Applied Ecology, 6, 367–383. https://doi.org/10.1016/j.baae.2005.02.004.
Ulrich, W., Zaplata, M. K., Winter, S., Schaaf, W., Fischer, A., Soliveres, S., & Gotelli, N. J. (2016). Species interactions and random dispersal rather than habitat filtering drive community assembly during early plant succession. Oikos, 125, 698–707. https://doi.org/10.1111/oik.02658.
Viketoft, M., Bengtsson, J., Sohlenius, B., Berg, M. P., Petchey, O., Palmborg, C., & Huss‐Danell, K. (2009). Long‐term effects of plant diversity and composition on soil nematode communities in model grasslands. Ecology, 90, 90–99. https://doi.org/10.1890/08‐0382.1.
Wall, D. H. (2005). Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarctic Science, 17, 523–531. https://doi.org/10.1017/S0954102005002944.
Wardhaugh, C. W., Stork, N. E., & Edwards, W. (2012). Feeding guild structure of beetles on Australian tropical rainforest trees reflects microhabitat resource availability: Beetle guild structure in rainforest canopies. Journal of Animal Ecology, 81, 1086–1094. https://doi.org/10.1111/j.1365‐2656.2012.01988.x.
Webb, C. O., Ackerly, D. D., & Kembel, S. W. (2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098–2100. https://doi.org/10.1093/bioinformatics/btn358.
Xiao, L., Liu, G., Li, P., & Xue, S. (2021). Ecological stoichiometry of plant‐soil‐enzyme interactions drives secondary plant succession in the abandoned grasslands of Loess Plateau, China. Catena, 202, Article 105302. https://doi.org/10.1016/j.catena.2021.105302.
معلومات مُعتمدة: 41830321 National Natural Science Foundation of China; 31870412 National Natural Science Foundation of China; 32071532 National Natural Science Foundation of China; BP0719040 111 Project; 22JR5RG564 Natural Science Foundation of Gansu Province
فهرسة مساهمة: Keywords: Antarctic plants; Diversidad beta; beta diversity; beta多样性、功能多样性、同质化、超体积、土壤动物、土壤线虫; diversidad funcional; fauna del suelo; functional diversity; hipervolúmenes; homogenización; homogenization; hypervolumes; nemátodos del suelo; plantas de la Antártida; soil fauna; soil nematodes; 南极植物、
Local Abstract: [Publisher, Spanish; Castilian] Efectos de la posición taxonómica de las plantas sobre las comunidades de nemátodos del suelo en la Antártida Resumen Los ecosistemas terrestres de la Antártida enfrentan las mayores amenazas del cambio climático global, que está alterando gravemente la composición de plantas. Estas transformaciones pueden provocar una reorganización importante de la composición de la comunidad del suelo, incluyendo atributos y diversidad funcionales, y por lo tanto afectar los procesos ecosistémicos en la Antártida. Utilizamos análisis de secuenciación de alto rendimiento para investigar nemátodos del suelo debajo de tres grupos funcionales de plantas dominantes (líquenes, musgos y plantas vasculares) y de suelo desnudo en la región de la Antártida. Calculamos la diversidad funcional de nemátodos con base en su dieta, historia de vida y masa corporal mediante hipervolúmenes n‐dimensionales de densidad del núcleo. También calculamos la diversidad beta taxonómica y funcional de las comunidades de nemátodos con base en la disimilitud de Jacard. La presencia de plantas no tuvo efecto significativo sobre la riqueza taxonómica de nemátodos, pero incrementó su riqueza funcional significativamente. La presencia de plantas también disminuyó la diversidad beta taxonómica (homogenización) significativamente. Solo musgos y plantas vasculares disminuyeron la diversidad beta funcional de nemátodos, lo cual se debió principalmente a un menor efecto del componente de diferencia de riqueza. La presencia de plantas también incrementó el efecto de los procesos determinísticos posiblemente porque el filtrado ambiental creó condiciones favorables para los nemátodos de niveles tróficos inferiores con historias de vida corta y tamaño corporal pequeño. El incremento de la cobertura de plantas en la Antártida debido al cambio climático puede conducir a una mayor diversidad de especies de nemátodos que pueden utilizar los escasos recursos y a la homogenización taxonómica y funcional de los nemátodos. En un futuro bajo el cambio climático, es posible la reestructuración comunitaria en la región. [Publisher, Chinese] 摘要 气候变化对南极洲陆地生态系统构成巨大威胁, 极大地改变植物的组成。这些变化可能会改变土壤群落组成(包括功能特征和多样性), 从而影响南极洲的生态系统过程。我们使用高通量测序方法调查了南极地区三种主要植物功能群(地衣、苔藓和维管植物)下和裸地下的土壤线虫。我们收集线虫的食性、生活史和生物量性状数据, 并使用核密度n维超体积计算了线虫的功能多样性。同时, 我们使用Jaccard距离计算了线虫分类和功能beta多样性。我们的结果表明, 植物的存在对线虫的分类丰富度没有显著影响, 但显著增加了线虫的功能丰富度。植物的存在还明显降低了分类学beta多样性(即导致线虫群落分类学上的同质化), 而苔藓植物和维管植物的存在主要通过降低丰富度差异组分, 从而降低了线虫功能beta多样性。植物的存在增加了确定性过程的影响, 这可能因为环境过滤为生活史短、体型小的低营养级线虫创造了有利条件。气候变化导致南极植物覆盖率增加, 这可能增加线虫利用资源的能力, 但会加剧线虫分类和功能的同质化, 最终可能导致线虫群落的重组。.
المشرفين على المادة: 0 (Soil)
تواريخ الأحداث: Date Created: 20240402 Date Completed: 20240723 Latest Revision: 20240723
رمز التحديث: 20240723
DOI: 10.1111/cobi.14264
PMID: 38563105
قاعدة البيانات: MEDLINE
الوصف
تدمد:1523-1739
DOI:10.1111/cobi.14264