دورية أكاديمية

Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer's Disease: Insights from Brain Cortex and Peripheral Blood Analysis.

التفاصيل البيبلوغرافية
العنوان: Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer's Disease: Insights from Brain Cortex and Peripheral Blood Analysis.
المؤلفون: Asadie M; Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran., Miri A; Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran., Badri T; Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran., Hosseini Nejad J; Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran., Gharechahi J; Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. jgharechahi@bmsu.ac.ir.
المصدر: Journal of molecular neuroscience : MN [J Mol Neurosci] 2024 Apr 03; Vol. 74 (2), pp. 37. Date of Electronic Publication: 2024 Apr 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9002991 Publication Model: Electronic Cited Medium: Internet ISSN: 1559-1166 (Electronic) Linking ISSN: 08958696 NLM ISO Abbreviation: J Mol Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Boston : Birkhäuser [i.e. Cambridge, MA : Birkhäuser Boston, c1989-
مواضيع طبية MeSH: Alzheimer Disease*/genetics, Humans ; Brain ; Temporal Lobe ; Frontal Lobe ; Entorhinal Cortex ; Late Onset Disorders ; Collectins ; Receptors, Scavenger ; Carboxypeptidases ; Repressor Proteins
مستخلص: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including AEBP1 and COLEC12, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-β (TGF-β) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of AEBP1 and COLEC12 in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of AEBP1 and COLEC12 genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between AEBP1 and COLEC12 in AD and underscores their potential as markers for disease detection and monitoring.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. (PMID: 1528933010.1158/0008-5472.CAN-04-0496)
Arvanitakis Z, Shah RC, Bennett DA (2019) Diagnosis and management of dementia: review. JAMA 322(16):1589–1599. (PMID: 31638686746212210.1001/jama.2019.4782)
Ascolani A, Balestrieri E, Minutolo A, Mosti S, Spalletta G, Bramanti P et al (2012) Dysregulated NF-κB pathway in peripheral mononuclear cells of Alzheimer’s disease patients. Curr Alzheimer Res 9(1):128–137. (PMID: 2159205410.2174/156720512799015091)
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet 25(1):25–29. (PMID: 10802651)
Bai Z, Stamova B, Xu H, Ander BP, Wang J, Jickling GC et al (2014) Distinctive RNA expression profiles in blood associated with Alzheimer disease after accounting for white matter hyperintensities. Alzheimer Dis Assoc Disord 28(3):226–233. (PMID: 24731980413946810.1097/WAD.0000000000000022)
Bakkour A, Morris JC, Wolk DA, Dickerson BC (2013) The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: specificity and differential relationships with cognition. Neuroimage 76:332–344. (PMID: 2350738210.1016/j.neuroimage.2013.02.059)
Balta S (2021) Endothelial dysfunction and inflammatory markers of vascular disease. Curr Vasc Pharmacol 19(3):243–249. (PMID: 3231689410.2174/18756212MTA1oOTYh3)
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 41(Database issue):D991–D995.
Bogie JF, Mailleux J, Wouters E, Jorissen W, Grajchen E, Vanmol J et al (2017) Scavenger receptor collectin placenta 1 is a novel receptor involved in the uptake of myelin by phagocytes. Sci Rep 7:44794. (PMID: 28317919535796410.1038/srep44794)
Booij BB, Lindahl T, Wetterberg P, Skaane NV, Sæbø S, Feten G et al (2011) A gene expression pattern in blood for the early detection of Alzheimer’s disease. J Alzheimers Dis 23(1):109–119. (PMID: 2093026410.3233/JAD-2010-101518)
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259. (PMID: 175955810.1007/BF00308809)
Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15(1–2):6–31. (PMID: 133658610.1016/0168-0102(92)90014-4)
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191. (PMID: 1959593710.1016/j.jalz.2007.04.381)
Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML et al (2011) TGF-β1 pathway as a new target for neuroprotection in Alzheimer’s disease. CNS Neurosci Ther 17(4):237–249. (PMID: 1992547910.1111/j.1755-5949.2009.00115.x)
Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V et al (2012) Dysfunction of TGF-β1 signaling in Alzheimer’s disease: perspectives for neuroprotection. Cell Tissue Res 347(1):291–301. (PMID: 2187928910.1007/s00441-011-1230-6)
Chang LL, Hsu WH, Kao MC, Chou CC, Lin CC, Liu CJ et al (2018) Stromal C-type lectin receptor COLEC12 integrates H. pylori, PGE2-EP2/4 axis and innate immunity in gastric diseases. Sci Rep 8(1):3821. (PMID: 29491476583050610.1038/s41598-018-20957-2)
Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M et al (2012) Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15(1):77–90. (PMID: 2132955510.1017/S1461145711000149)
Cheng F, Fransson L, Mani K (2020) Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells. Glycobiology 30(8):539–549. (PMID: 32039447737292510.1093/glycob/cwaa011)
Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K (2017) Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement (n Y) 3(3):367–384. (PMID: 2906734310.1016/j.trci.2017.05.002)
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2019) Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement (n Y) 5:272–293. (PMID: 3133433010.1016/j.trci.2019.05.008)
Davis J, Cribbs DH, Cotman CW, Van Nostrand WE (1999) Pathogenic amyloid beta-protein induces apoptosis in cultured human cerebrovascular smooth muscle cells. Amyloid 6(3):157–164. (PMID: 1052427910.3109/13506129909007321)
de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73(4):685–697. (PMID: 22365544329275910.1016/j.neuron.2011.11.033)
Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN et al (2009) The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 19(3):497–510. (PMID: 1863273910.1093/cercor/bhn113)
Evangelista JE, Xie Z, Marino GB, Nguyen N, Clarke DJB, Ma’ayan A (2023) Enrichr-KG: bridging enrichment analysis across multiple libraries. Nucleic Acids Res 51(W1):W168–W179. (PMID: 371669731032009810.1093/nar/gkad393)
Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D et al (2009) One-year brain atrophy evident in healthy aging. J Neurosci 29(48):15223–15231. (PMID: 19955375282779310.1523/JNEUROSCI.3252-09.2009)
Gene Ontology (GO) (2006) The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34(suppl_1):D322–D326. https://doi.org/10.1093/nar/gkj021.
Gómez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16(14):4491–4500. (PMID: 8699259657886610.1523/JNEUROSCI.16-14-04491.1996)
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A (2019) Vascular dysfunction in Alzheimer’s disease: a prelude to the pathological process or a consequence of it? J Clin Med 8(5):651. https://doi.org/10.3390/jcm8050651. (PMID: 10.3390/jcm8050651310834426571853)
Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT et al (2010) Transsynaptic progression of amyloid-β-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68(3):428–441. (PMID: 21040845305004310.1016/j.neuron.2010.10.020)
Hohenfeld C, Kuhn H, Müller C, Nellessen N, Ketteler S, Heinecke A et al (2020) Changes in brain activation related to visuo-spatial memory after real-time fMRI neurofeedback training in healthy elderly and Alzheimer’s disease. Behav Brain Res 381:112435. (PMID: 3186384510.1016/j.bbr.2019.112435)
Hunt GP, Grassi L, Henkin R, Smeraldi F, Spargo TP, Kabiljo R et al (2022) GEOexplorer: a webserver for gene expression analysis and visualisation. Nucleic Acids Res 50(W1):W367–W374. (PMID: 35609980925278510.1093/nar/gkac364)
Igarashi KM (2023) Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci 46(2):124–136. (PMID: 3651352410.1016/j.tins.2022.11.006)
Jager M, Lee MJ, Li C, Farmer SR, Fried SK, Layne MD (2018) Aortic carboxypeptidase-like protein enhances adipose tissue stromal progenitor differentiation into myofibroblasts and is upregulated in fibrotic white adipose tissue. PLoS ONE 13(5):e0197777. (PMID: 29799877596975410.1371/journal.pone.0197777)
Jefferies WA, Price KA, Biron KE, Fenninger F, Pfeifer CG, Dickstein DL (2013) Adjusting the compass: new insights into the role of angiogenesis in Alzheimer’s disease. Alzheimers Res Ther 5(6):64. (PMID: 24351529405661510.1186/alzrt230)
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361. (PMID: 2789966210.1093/nar/gkw1092)
Kim SW, Muise AM, Lyons PJ, Ro HS (2001) Regulation of adipogenesis by a transcriptional repressor that modulates MAPK activation. J Biol Chem 276(13):10199–10206. (PMID: 1115247510.1074/jbc.M010640200)
Kitamura Y, Shimohama S, Ota T, Matsuoka Y, Nomura Y, Taniguchi T (1997) Alteration of transcription factors NF-kappaB and STAT1 in Alzheimer’s disease brains. Neurosci Lett 237(1):17–20. (PMID: 940686910.1016/S0304-3940(97)00797-0)
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97. (PMID: 27141961498792410.1093/nar/gkw377)
Lee WJ, Brown JA, Kim HR, La Joie R, Cho H, Lyoo CH et al (2022) Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading. Neuron 110(12):1932–43.e5. (PMID: 35443153923312310.1016/j.neuron.2022.03.034)
Li GZ, Deng JF, Qi YZ, Liu R, Liu ZX (2020) COLEC12 regulates apoptosis of osteosarcoma through Toll-like receptor 4-activated inflammation. J Clin Lab Anal 34(11):e23469. (PMID: 32822099767620810.1002/jcla.23469)
Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Ramsey K et al (2008) Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol Genomics 33(2):240–256. (PMID: 1827032010.1152/physiolgenomics.00242.2007)
Liu YS, Wang YM, Zha DJ (2021) Brain functional and structural changes in Alzheimer’s disease with sleep disorders: a systematic review. Front Psychiatry 12:772068. (PMID: 34790139859103410.3389/fpsyt.2021.772068)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. (PMID: 1184660910.1006/meth.2001.1262)
Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339. (PMID: 31564456677804210.1016/j.cell.2019.09.001)
Ma YJ, Hein E, Munthe-Fog L, Skjoedt MO, Bayarri-Olmos R, Romani L et al (2015) Soluble collectin-12 (CL-12) is a pattern recognition molecule initiating complement activation via the alternative pathway. J Immunol 195(7):3365–3373. (PMID: 2629060510.4049/jimmunol.1500493)
Majdalawieh A, Ro HS (2010) Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010:823821. (PMID: 20396415285508910.1155/2010/823821)
Majdalawieh A, Zhang L, Fuki IV, Rader DJ, Ro HS (2006) Adipocyte enhancer-binding protein 1 is a potential novel atherogenic factor involved in macrophage cholesterol homeostasis and inflammation. Proc Natl Acad Sci U S A 103(7):2346–2351. (PMID: 16461908141370210.1073/pnas.0508139103)
Majdalawieh A, Zhang L, Ro HS (2007) Adipocyte enhancer-binding protein-1 promotes macrophage inflammatory responsiveness by up-regulating NF-kappaB via IkappaBalpha negative regulation. Mol Biol Cell 18(3):930–942. (PMID: 17202411180508110.1091/mbc.e06-03-0217)
Masliah E, Ho G, Wyss-Coray T (2001) Functional role of TGF beta in Alzheimer’s disease microvascular injury: lessons from transgenic mice. Neurochem Int 39(5–6):393–400. (PMID: 1157877410.1016/S0197-0186(01)00046-8)
Mossello E, Ballini E (2012) Management of patients with Alzheimer’s disease: pharmacological treatment and quality of life. Ther Adv Chronic Dis 3(4):183–193. (PMID: 23342234353928910.1177/2040622312452387)
Nakamura K, Funakoshi H, Miyamoto K, Tokunaga F, Nakamura T (2001) Molecular cloning and functional characterization of a human scavenger receptor with C-type lectin (SRCL), a novel member of a scavenger receptor family. Biochem Biophys Res Commun 280(4):1028–1035. (PMID: 1116263010.1006/bbrc.2000.4210)
Nakamura K, Ohya W, Funakoshi H, Sakaguchi G, Kato A, Takeda M et al (2006) Possible role of scavenger receptor SRCL in the clearance of amyloid-beta in Alzheimer’s disease. J Neurosci Res 84(4):874–890. (PMID: 1686896010.1002/jnr.20992)
Noh MY, Lim SM, Oh KW, Cho KA, Park J, Kim KS et al (2016) Mesenchymal stem cells modulate the functional properties of microglia via TGF-β secretion. Stem Cells Transl Med 5(11):1538–1549. (PMID: 27400795507049710.5966/sctm.2015-0217)
Ohtani K, Suzuki Y, Eda S, Kawai T, Kase T, Keshi H et al (2001) The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. J Biol Chem 276(47):44222–44228. (PMID: 1156473410.1074/jbc.M103942200)
Olsen KS, Skeie G, Lund E (2015) Whole-blood gene expression profiles in large-scale epidemiological studies: what do they tell? Curr Nutr Rep 4(4):377–386. (PMID: 26568898463957410.1007/s13668-015-0143-5)
Patel H, Hodges AK, Curtis C, Lee SH, Troakes C, Dobson RJB et al (2019) Transcriptomic analysis of probable asymptomatic and symptomatic alzheimer brains. Brain Behav Immun 80:644–656. (PMID: 3106384710.1016/j.bbi.2019.05.009)
Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E et al (2016) Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev 30:25–48. (PMID: 2682778610.1016/j.arr.2016.01.002)
Piras IS, Krate J, Delvaux E, Nolz J, De Both MD, Mastroeni DF et al (2019a) Association of AEBP1 and NRN1 RNA expression with Alzheimer’s disease and neurofibrillary tangle density in middle temporal gyrus. Brain Res 1719:217–224. (PMID: 3117671210.1016/j.brainres.2019.06.004)
Piras IS, Krate J, Delvaux E, Nolz J, Mastroeni DF, Persico AM et al (2019b) Transcriptome changes in the Alzheimer’s disease middle temporal gyrus: importance of RNA metabolism and mitochondria-associated membrane genes. J Alzheimers Dis 70(3):691–713. (PMID: 3125611810.3233/JAD-181113)
Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M (2015) World Alzheimer Report 2015. The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends (Doctoral dissertation, Alzheimer's Disease International).
Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651. (PMID: 24398425399226110.1016/j.bcp.2013.12.024)
Ries M, Sastre M (2016) Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci 8:160. (PMID: 27458370493209710.3389/fnagi.2016.00160)
Salminen A (2021) Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer’s disease. Neurochem Int 142:104919. (PMID: 3324253810.1016/j.neuint.2020.104919)
Schwarz CG, Gunter JL, Wiste HJ, Przybelski SA, Weigand SD, Ward CP et al (2016) A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer’s disease severity. Neuroimage Clin 11:802–812. (PMID: 28050342518749610.1016/j.nicl.2016.05.017)
Selman L, Skjodt K, Nielsen O, Floridon C, Holmskov U, Hansen S (2008) Expression and tissue localization of collectin placenta 1 (CL-P1, SRCL) in human tissues. Mol Immunol 45(11):3278–3288. (PMID: 1842360210.1016/j.molimm.2008.02.018)
Shi Z, Hong Y, Zhang K, Wang J, Zheng L, Zhang Z et al (2017) BAG-1M co-activates BACE1 transcription through NF-κB and accelerates Aβ production and memory deficit in Alzheimer’s disease mouse model. Biochim Biophys Acta Mol Basis Dis 1863(9):2398–2407. (PMID: 2850270510.1016/j.bbadis.2017.05.014)
Shijo M, Honda H, Suzuki SO, Hamasaki H, Hokama M, Abolhassani N et al (2018) Association of adipocyte enhancer-binding protein 1 with Alzheimer’s disease pathology in human hippocampi. Brain Pathol 28(1):58–71. (PMID: 2799705110.1111/bpa.12475)
Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49(9):1373–1384. (PMID: 28714976566903910.1038/ng.3916)
Soreq L, Bird H, Mohamed W, Hardy J (2023) Single-cell RNA sequencing analysis of human Alzheimer’s disease brain samples reveals neuronal and glial specific cells differential expression. PLoS ONE 18(2):e0277630. (PMID: 36827281995595910.1371/journal.pone.0277630)
Sperling RA, Jack CR Jr, Aisen PS (2011) Testing the right target and right drug at the right stage. Sci Transl Med 3(111):111cm33. (PMID: 22133718375290610.1126/scitranslmed.3002609)
Vahia VN (2013) Diagnostic and statistical manual of mental disorders 5: a quick glance. Indian J Psychiatry 55(3):220–223. (PMID: 24082241377734210.4103/0019-5545.117131)
Van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1(1):1–8. (PMID: 166933910.1002/hipo.450010102)
Vivien D, Ali C (2006) Transforming growth factor-beta signalling in brain disorders. Cytokine Growth Factor Rev 17(1–2):121–128. (PMID: 1627150010.1016/j.cytogfr.2005.09.011)
Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K et al (2016) Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 19(8):1085–1092. (PMID: 27322420496158510.1038/nn.4328)
Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L et al (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7(5):612–618. (PMID: 1132906410.1038/87945)
Xu J, Chen S, Ku G, Ahmed SH, Xu J, Chen H et al (2001) Amyloid beta peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J Cereb Blood Flow Metab 21(6):702–710. (PMID: 1148853910.1097/00004647-200106000-00008)
Zou K, Abdullah M, Michikawa M (2020) Current biomarkers for Alzheimer’s disease: from CSF to blood. J Pers Med 10(3):85. https://doi.org/10.3390/jpm10030085. (PMID: 10.3390/jpm10030085328066687564023)
فهرسة مساهمة: Keywords: AEBP1; COLEC12; Alzheimer’s disease; Brain cortex; Diagnosis; mRNA expression profile
المشرفين على المادة: 0 (COLEC12 protein, human)
0 (Collectins)
0 (Receptors, Scavenger)
0 (AEBP1 protein, human)
EC 3.4.- (Carboxypeptidases)
0 (Repressor Proteins)
تواريخ الأحداث: Date Created: 20240403 Date Completed: 20240404 Latest Revision: 20240719
رمز التحديث: 20240719
DOI: 10.1007/s12031-024-02212-8
PMID: 38568322
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-1166
DOI:10.1007/s12031-024-02212-8