دورية أكاديمية

Disrupting the Hofmeister bias in salt liquid-liquid extraction with an arylethynyl bisurea anion receptor.

التفاصيل البيبلوغرافية
العنوان: Disrupting the Hofmeister bias in salt liquid-liquid extraction with an arylethynyl bisurea anion receptor.
المؤلفون: Fargher HA; Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA haley@uoregon.edu dwj@uoregon.edu., Delmau LH; Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831-6384 USA., Bryantsev VS; Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831-6119 USA moyerba@ornl.gov., Haley MM; Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA haley@uoregon.edu dwj@uoregon.edu., Johnson DW; Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon Eugene OR 97403-1253 USA haley@uoregon.edu dwj@uoregon.edu., Moyer BA; Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831-6119 USA moyerba@ornl.gov.
المصدر: Chemical science [Chem Sci] 2024 Mar 07; Vol. 15 (14), pp. 5311-5318. Date of Electronic Publication: 2024 Mar 07 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Society of Chemistry Country of Publication: England NLM ID: 101545951 Publication Model: eCollection Cited Medium: Print ISSN: 2041-6520 (Print) Linking ISSN: 20416520 NLM ISO Abbreviation: Chem Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : Royal Society of Chemistry, [2010]-
مستخلص: Host-mediated liquid-liquid extraction is a convenient method for the separation of inorganic salts. However, selective extraction of an anion, regardless of its hydrophilicity or lipophilicity as qualitatively described by its place in the Hofmeister series, remains challenging. Herein we report the complete disruption of the Hofmeister-based ordering of anions in host-mediated extraction by a rigidified tweezer-type receptor possessing remarkably strong anion-binding affinity under the conditions examined. Experiments introduce a convenient new method for determination of anion binding using phosphorus inductively coupled plasma mass spectrometry (ICP-MS) to measure extraction of tetra- n -butylphosphonium (TBP + ) salts from water into nitrobenzene, specifically examining the disrupting effect of the added arylethynyl bisurea anion receptor. In the absence of the receptor, the salt partitioning follows the expected Hofmeister-type ordering favoring the larger, less hydrated anions; the analysis yields the value -24 kJ mol -1 for the standard Gibbs energy of partitioning of TBP + cation from water into nitrobenzene at 25 °C. Selectivity is markedly changed by the addition of receptor to the nitrobenzene and is concentration dependent, giving rise to three selectivity regimes. We then used SXLSQI liquid-liquid equilibrium analysis software developed at Oak Ridge National Laboratory to fit host-mediated extraction equilibria for TBP + salts of Cl - , Br - , I - , and NO 3 - to the distribution data. While the reverse-Hofmeister 1 : 1 binding of the anions by the receptor effectively cancels the Hofmeister selectivity of the TBPX partitioning into nitrobenzene, formation of unexpected 2 : 1 receptor : anion complexes favoring Cl - and Br - dominates the selectivity at elevated receptor concentrations, producing the unusual order Br - > Cl - > NO 3 - > I - in anion distribution wherein a middle member of the series is selected and the most lipophilic anion is disfavored. Density functional theory calculations confirmed the likelihood of forming 2 : 1 complexes, where Cl - and Br - are encapsulated by two receptors adopting energetically competitive single or double helix structures. The calculations explain the rare non-Hofmeister preference for Br - . This example shows that anion receptors can be used to control the selectivity and efficiency of salt extraction regardless of the position of the anion in the Hofmeister series.
Competing Interests: There are no conflicts to declare.
(This journal is © The Royal Society of Chemistry.)
References: J Am Chem Soc. 2015 Dec 2;137(47):14959-67. (PMID: 26539974)
Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11716-54. (PMID: 25204549)
J Am Chem Soc. 2020 May 6;142(18):8243-8251. (PMID: 32283020)
Chem Commun (Camb). 2003 Sep 7;(17):2248-9. (PMID: 13678224)
Inorg Chem. 2007 Jan 8;46(1):261-72. (PMID: 17198435)
Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):659-66. (PMID: 17666391)
Chem Sci. 2018 Nov 19;10(1):67-72. (PMID: 30746074)
RSC Adv. 2021 Aug 4;11(43):26581-26585. (PMID: 35479978)
J Org Chem. 2020 Oct 2;85(19):12367-12373. (PMID: 32916056)
Anal Chem. 2012 Oct 2;84(19):8214-21. (PMID: 22931168)
J Am Chem Soc. 2005 Feb 16;127(6):1810-9. (PMID: 15701016)
Angew Chem Int Ed Engl. 2019 Mar 18;58(12):3934-3938. (PMID: 30702802)
Chem Commun (Camb). 2001 Sep 7;(17):1620-1. (PMID: 12240411)
Chem Commun (Camb). 2005 Nov 14;(42):5263-5. (PMID: 16244722)
Angew Chem Int Ed Engl. 2007;46(20):3706-9. (PMID: 17415725)
Chem Commun (Camb). 2019 Mar 21;55(25):3590-3593. (PMID: 30758374)
Chem Commun (Camb). 2011 May 21;47(19):5539-41. (PMID: 21472189)
Acc Chem Res. 2023 Jun 6;56(11):1320-1329. (PMID: 36913317)
Int J Mol Sci. 2020 Dec 12;21(24):. (PMID: 33322738)
J Phys Chem A. 2020 Dec 10;124(49):10171-10180. (PMID: 33253571)
Angew Chem Int Ed Engl. 2016 Sep 12;55(38):11480-4. (PMID: 27510286)
Angew Chem Int Ed Engl. 2013 Sep 23;52(39):10270-4. (PMID: 23934912)
Science. 2019 Jul 12;365(6449):159-161. (PMID: 31123106)
Chem Soc Rev. 2010 Oct;39(10):3784-809. (PMID: 20737073)
Environ Pollut. 2019 Apr;247:1110-1124. (PMID: 30823340)
Chem Soc Rev. 2014 Apr 21;43(8):2451-75. (PMID: 24464346)
تواريخ الأحداث: Date Created: 20240405 Latest Revision: 20240406
رمز التحديث: 20240406
مُعرف محوري في PubMed: PMC10988605
DOI: 10.1039/d3sc05922g
PMID: 38577371
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-6520
DOI:10.1039/d3sc05922g