دورية أكاديمية

P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism.

التفاصيل البيبلوغرافية
العنوان: P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism.
المؤلفون: Singh S; Department of Pharmacology, University of Washington, Seattle, Washington, USA., Sarroza D; Department of Pharmacology, University of Washington, Seattle, Washington, USA., English A; Department of Pharmacology, University of Washington, Seattle, Washington, USA., Whittington D; Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA., Dong A; Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China., Malamas M; Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA., Makriyannis A; Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA., van der Stelt M; Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands., Li Y; Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China., Zweifel L; Department of Pharmacology, University of Washington, Seattle, Washington, USA.; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA.; Center for Cannabis Research, University of Washington, Seattle, Washington, USA.; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA., Bruchas MR; Department of Pharmacology, University of Washington, Seattle, Washington, USA.; Center for Cannabis Research, University of Washington, Seattle, Washington, USA.; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA.; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA., Land BB; Department of Pharmacology, University of Washington, Seattle, Washington, USA.; Center for Cannabis Research, University of Washington, Seattle, Washington, USA.; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA., Stella N; Department of Pharmacology, University of Washington, Seattle, Washington, USA.; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA.; Center for Cannabis Research, University of Washington, Seattle, Washington, USA.; Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington, USA.
المصدر: British journal of pharmacology [Br J Pharmacol] 2024 Aug; Vol. 181 (15), pp. 2459-2477. Date of Electronic Publication: 2024 Apr 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd.
مواضيع طبية MeSH: Endocannabinoids*/metabolism , Glycerides*/metabolism , Arachidonic Acids*/metabolism , Receptors, Purinergic P2X7*/metabolism , Neurons*/metabolism , Neurons*/drug effects, Animals ; Mice ; Adenosine Triphosphate/metabolism ; Monoacylglycerol Lipases/metabolism ; Monoacylglycerol Lipases/antagonists & inhibitors ; Receptor, Cannabinoid, CB1/metabolism ; Polyunsaturated Alkamides/metabolism ; Cell Line, Tumor
مستخلص: Background and Purpose: Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRAB eCB2.0 , can address this shortfall.
Experimental Approach: 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRAB eCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader.
Key Results: 2-AG and AEA increased GRAB eCB2.0 fluorescence in N2a cells with EC 50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB 1 R) antagonist SR141617 and absent in cells expressing the mutant-GRAB eCB2.0 . ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRAB eCB2.0 signal within minutes primarily via activation of P2X 7 receptors (P2X 7 R). This response was dependent on diacylglycerol lipase β activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/β-hydrolase domain containing 6 (ABHD6).
Conclusions and Implications: Considering that P2X 7 R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.
(© 2024 British Pharmacological Society.)
References: Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Abbracchio, M. P., Abraham, G., Agoulnik, A., Alexander, W., Al‐Hosaini, K., Bäck, M., Baker, J. G., Barnes, N. M., … Ye, R. D. (2023). The concise guide to PHARMACOLOGY 2023/24: G protein‐coupled receptors. British Journal of Pharmacology, 180, S23–S144.
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The concise guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373. https://doi.org/10.1111/bph.16179.
Alexander, S. P. H., Mathie, A. A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Caceres, A. I., Catterall, W. A., Conner, A. C., … Zhu, M. (2023). The concise guide to PHARMACOLOGY 2023/24: Ion channels. British Journal of Pharmacology, 180, S145–S222.
An, D., Peigneur, S., Hendrickx, L. A., & Tytgat, J. (2020). Targeting cannabinoid receptors: Current status and prospects of natural products. International Journal of Molecular Sciences, 21, 5064. https://doi.org/10.3390/ijms21145064.
Andrejew, R., Oliveira‐Giacomelli, Á., Ribeiro, D. E., Glaser, T., Arnaud‐Sampaio, V. F., Lameu, C., & Ulrich, H. (2020). The P2X7 receptor: Central hub of brain diseases. Frontiers in Molecular Neuroscience, 13, 124. https://doi.org/10.3389/fnmol.2020.00124.
Baggelaar, M. P., Chameau, P. J. P., Kantae, V., Hummel, J., Hsu, K.‐L., Janssen, F., van der Wel, T., Soethoudt, M., Deng, H., den Dulk, H., Allarà, M., Florea, B. I., di Marzo, V., Wadman, W. J., Kruse, C. G., Overkleeft, H. S., Hankemeier, T., Werkman, T. R., Cravatt, B. F., & van der Stelt, M. (2015). Highly selective, reversible inhibitor identified by comparative chemoproteomics modulates diacylglycerol lipase activity in neurons. Journal of the American Chemical Society, 137, 8851–8857. https://doi.org/10.1021/jacs.5b04883.
Baggelaar, M. P., Maccarrone, M., & van der Stelt, M. (2018). 2‐Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Progress in Lipid Research, 71, 1–17. https://doi.org/10.1016/j.plipres.2018.05.002.
Biringer, R. G. (2021). The rise and fall of anandamide: Processes that control synthesis, degradation, and storage. Molecular and Cellular Biochemistry, 476, 2753–2775. https://doi.org/10.1007/s11010-021-04121-5.
Bisogno, T., Howell, F., Williams, G., Minassi, A., Cascio, M. G., Ligresti, A., Matias, I., Schiano‐Moriello, A., Paul, P., Williams, E. J., Gangadharan, U., Hobbs, C., di Marzo, V., & Doherty, P. (2003). Cloning of the first sn1‐DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. The Journal of Cell Biology, 163, 463–468. https://doi.org/10.1083/jcb.200305129.
Burkey, T. H., Quock, R. M., Consroe, P., Ehlert, F. J., Hosohata, Y., Roeske, W. R., & Yamamura, H. I. (1997). Relative efficacies of cannabinoid CB1 receptor agonists in the mouse brain. European Journal of Pharmacology, 336, 295–298. https://doi.org/10.1016/S0014-2999(97)01255-7.
Burnstock, G. (2018). Purine and purinergic receptors. Brain and Neuroscience Advances, 2, 2398212818817494.
Busquets‐Garcia, A., Bains, J., & Marsicano, G. (2018). CB(1) receptor signaling in the brain: Extracting specificity from ubiquity. Neuropsychopharmacology, 43, 4–20. https://doi.org/10.1038/npp.2017.206.
Chavez‐Noriega, L. E., Crona, J. H., Washburn, M. S., Urrutia, A., Elliott, K. J., & Johnson, E. C. (1997). Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors hα2β2, hα2β4, hα3β2, hα3β4, hα4β2, hα4β4 and hα7 expressed in Xenopus oocytes. Journal of Pharmacology and Experimental Therapeutics, 280, 346–356.
Chessell, I. P., Hatcher, J. P., Bountra, C., Michel, A. D., Hughes, J. P., Green, P., Egerton, J., Murfin, M., Richardson, J., Peck, W. L., Grahames, C. B. A., Casula, M. A., Yiangou, Y., Birch, R., Anand, P., & Buell, G. N. (2005). Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain, 114, 386–396. https://doi.org/10.1016/j.pain.2005.01.002.
Covelo, A., Eraso‐Pichot, A., Fernández‐Moncada, I., Serrat, R., & Marsicano, G. (2021). CB1R‐dependent regulation of astrocyte physiology and astrocyte‐neuron interactions. Neuropharmacology, 195, 108678. https://doi.org/10.1016/j.neuropharm.2021.108678.
Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179(15), 3907‐3913. https://doi.org/10.1111/bph.15868.
Dong, A., He, K., Dudok, B., Farrell, J. S., Guan, W., Liput, D. J., Puhl, H. L., Cai, R., Wang, H., Duan, J., Albarran, E., Ding, J., Lovinger, D. M., Li, B., Soltesz, I., & Li, Y. (2021). A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nature Biotechnology, 40(5), 787–798.
Donnelly‐Roberts, D. L., Namovic, M. T., Han, P., & Jarvis, M. F. (2009). Mammalian P2X7 receptor pharmacology: Comparison of recombinant mouse, rat and human P2X7 receptors. British Journal of Pharmacology, 157, 1203–1214. https://doi.org/10.1111/j.1476-5381.2009.00233.x.
Drysdale, C., Park, K., Vessey, K. A., Huang, X., Caruso, E., Li, Y., Wong, J., Wiley, J. S., Fletcher, E., Guymer, R. H., & Gu, B. J. (2022). P2X7‐mediated alteration of membrane fluidity is associated with the late stages of age‐related macular degeneration. Purinergic Signal, 18, 469–479. https://doi.org/10.1007/s11302-022-09894-y.
Eichmann, T. O., & Lass, A. (2015). DAG tales: The multiple faces of diacylglycerol—Stereochemistry, metabolism, and signaling. Cellular and Molecular Life Sciences, 72, 3931–3952. https://doi.org/10.1007/s00018-015-1982-3.
Eldeeb, K., Leone‐Kabler, S., & Howlett, A. C. (2016). CB1 cannabinoid receptor‐mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function. Journal of Basic and Clinical Physiology and Pharmacology, 27, 311–322. https://doi.org/10.1515/jbcpp-2015-0096.
Erb, L., & Weisman, G. A. (2012). Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, 1, 789–803. https://doi.org/10.1002/wmts.62.
van Esbroeck, A. C. M., Kantae, V., di, X., van der Wel, T., den Dulk, H., Stevens, A. F., Singh, S., Bakker, A. T., Florea, B. I., Stella, N., Overkleeft, H. S., Hankemeier, T., & van der Stelt, M. (2019). Identification of α,β‐hydrolase domain containing protein 6 as a diacylglycerol lipase in neuro‐2a cells. Frontiers in Molecular Neuroscience, 12, 286–286. https://doi.org/10.3389/fnmol.2019.00286.
Farah, S. I., Hilston, S., Tran, N., Zvonok, N., & Makriyannis, A. (2022). 1‐, 2‐ and 3‐AG as substrates of the endocannabinoid enzymes and endogenous ligands of the cannabinoid receptor 1. Biochemical and Biophysical Research Communications, 591, 31–36. https://doi.org/10.1016/j.bbrc.2021.12.105.
Farrell, J. S., Colangeli, R., Dong, A., George, A. G., Addo‐Osafo, K., Kingsley, P. J., Morena, M., Wolff, M. D., Dudok, B., He, K., Patrick, T. A., Sharkey, K. A., Patel, S., Marnett, L. J., Hill, M. N., Li, Y., Teskey, G. C., & Soltesz, I. (2021). In vivo endocannabinoid dynamics at the timescale of physiological and pathological neural activity. Neuron, 109, 2398–2403. https://doi.org/10.1016/j.neuron.2021.05.026.
Gómez‐Villafuertes, R., del Puerto, A., Díaz‐Hernández, M., Bustillo, D., Díaz‐Hernández, J. I., Huerta, P. G., Artalejo, A. R., Garrido, J. J., & Miras‐Portugal, M. T. (2009). Ca2+/calmodulin‐dependent kinase II signalling cascade mediates P2X7 receptor‐dependent inhibition of neuritogenesis in neuroblastoma cells. The FEBS Journal, 276, 5307–5325. https://doi.org/10.1111/j.1742-4658.2009.07228.x.
Graham, E. S., Ball, N., Scotter, E. L., Narayan, P., Dragunow, M., & Glass, M. (2006). Induction of Krox‐24 by endogenous cannabinoid type 1 receptors in Neuro2A cells is mediated by the MEK‐ERK MAPK pathway and is suppressed by the phosphatidylinositol 3‐kinase pathway*. Journal of Biological Chemistry, 281, 29085–29095. https://doi.org/10.1074/jbc.M602516200.
Grygorczyk, R., Boudreault, F., Ponomarchuk, O., Tan, J. J., Furuya, K., Goldgewicht, J., Kenfack, F., & Yu, F. (2021). Lytic release of cellular ATP: Physiological relevance and therapeutic applications. Life (Basel), 11, 700. https://doi.org/10.3390/life11070700.
He, Y., Taylor, N., Fourgeaud, L., & Bhattacharya, A. (2017). The role of microglial P2X7: Modulation of cell death and cytokine release. Journal of Neuroinflammation, 14, 135. https://doi.org/10.1186/s12974-017-0904-8.
Honore, P., Donnelly‐Roberts, D., Namovic, M. T., Hsieh, G., Zhu, C. Z., Mikusa, J. P., Hernandez, G., Zhong, C., Gauvin, D. M., Chandran, P., Harris, R., Medrano, A. P., Carroll, W., Marsh, K., Sullivan, J. P., Faltynek, C. R., & Jarvis, M. F. (2006). A‐740003 [N‐(1‐{[(cyanoimino)(5‐quinolinylamino) methyl] amino}‐2, 2‐dimethylpropyl)‐2‐(3, 4‐dimethoxyphenyl) acetamide], a novel and selective P2X7 receptor antagonist, dose‐dependently reduces neuropathic pain in the rat. Journal of Pharmacology and Experimental Therapeutics, 319, 1376–1385. https://doi.org/10.1124/jpet.106.111559.
Horowitz, L. F., Hirdes, W., Suh, B. C., Hilgemann, D. W., Mackie, K., & Hille, B. (2005). Phospholipase C in living cells: Activation, inhibition, Ca2+ requirement, and regulation of M current. The Journal of General Physiology, 126, 243–262. https://doi.org/10.1085/jgp.200509309.
Hossain, M. Z., Ando, H., Unno, S., & Kitagawa, J. (2020). Targeting peripherally restricted cannabinoid receptor 1, cannabinoid receptor 2, and endocannabinoid‐degrading enzymes for the treatment of neuropathic pain including neuropathic orofacial pain. International Journal of Molecular Sciences, 21, 1423. https://doi.org/10.3390/ijms21041423.
Hou, C., Kirchner, T., Singer, M., Matheis, M., Argentieri, D., & Cavender, D. (2004). In vivo activity of a phospholipase C inhibitor, 1‐(6‐((17β‐3‐methoxyestra‐1,3,5(10)‐trien‐17‐yl)amino)hexyl)‐1H‐pyrrole‐2,5‐dione (U73122), in acute and chronic inflammatory reactions. The Journal of Pharmacology and Experimental Therapeutics, 309, 697–704. https://doi.org/10.1124/jpet.103.060574.
Hsu, K.‐L., Tsuboi, K., Adibekian, A., Pugh, H., Masuda, K., & Cravatt, B. F. (2012). DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nature Chemical Biology, 8, 999–1007. https://doi.org/10.1038/nchembio.1105.
Hsu, K.‐L., Tsuboi, K., Chang, J. W., Whitby, L. R., Speers, A. E., Pugh, H., & Cravatt, B. F. (2013). Discovery and optimization of piperidyl‐1,2,3‐triazole ureas as potent, selective, and in vivo‐active inhibitors of α/β‐hydrolase domain containing 6 (ABHD6). Journal of Medicinal Chemistry, 56, 8270–8279. https://doi.org/10.1021/jm400899c.
Hua, T., Vemuri, K., Nikas, S. P., Laprairie, R. B., Wu, Y., Qu, L., Pu, M., Korde, A., Jiang, S., Ho, J. H., Han, G. W., Ding, K., Li, X., Liu, H., Hanson, M. A., Zhao, S., Bohn, L. M., Makriyannis, A., Stevens, R. C., & Liu, Z. J. (2017). Crystal structures of agonist‐bound human cannabinoid receptor CB(1). Nature, 547, 468–471. https://doi.org/10.1038/nature23272.
Janks, L., Sharma, C. V. R., & Egan, T. M. (2018). A central role for P2X7 receptors in human microglia. Journal of Neuroinflammation, 15, 325. https://doi.org/10.1186/s12974-018-1353-8.
Jin, W., Lo, T.‐M., Loh, H. H., & Thayer, S. A. (1994). U73122 inhibits phospholipase C‐dependent calcium mobilization in neuronal cells. Brain Research, 642, 237–243. https://doi.org/10.1016/0006-8993(94)90927-X.
Jung, K.‐M., Astarita, G., Thongkham, D., & Piomelli, D. (2011). Diacylglycerol lipase‐alpha and ‐beta control neurite outgrowth in neuro‐2a cells through distinct molecular mechanisms. Molecular Pharmacology, 80, 60–67. https://doi.org/10.1124/mol.110.070458.
Kanellopoulos, J. M., & Delarasse, C. (2019). Pleiotropic roles of P2X7 in the central nervous system. Frontiers in Cellular Neuroscience, 13, 401. https://doi.org/10.3389/fncel.2019.00401.
Karasawa, A., Michalski, K., Mikhelzon, P., & Kawate, T. (2017). The P2X7 receptor forms a dye‐permeable pore independent of its intracellular domain but dependent on membrane lipid composition. eLife, 6, e31186. https://doi.org/10.7554/eLife.31186.
Kennedy, C. (2021). The P2Y/P2X divide: How it began. Biochemical Pharmacology, 187, 114408. https://doi.org/10.1016/j.bcp.2021.114408.
Kokona, D., Spyridakos, D., Tzatzarakis, M., Papadogkonaki, S., Filidou, E., Arvanitidis, K. I., Kolios, G., Lamani, M., Makriyannis, A., Malamas, M. S., & Thermos, K. (2021). The endocannabinoid 2‐arachidonoylglycerol and dual ABHD6/MAGL enzyme inhibitors display neuroprotective and anti‐inflammatory actions in the in vivo retinal model of AMPA excitotoxicity. Neuropharmacology, 185, 108450. https://doi.org/10.1016/j.neuropharm.2021.108450.
Kopp, R., Krautloher, A., Ramírez‐Fernández, A., & Nicke, A. (2019). P2X7 interactions and signaling—Making head or tail of it. Frontiers in Molecular Neuroscience, 12, 183. https://doi.org/10.3389/fnmol.2019.00183.
Labouesse, M. A., & Patriarchi, T. (2021). A versatile GPCR toolkit to track in vivo neuromodulation: Not a one‐size‐fits‐all sensor. Neuropsychopharmacology, 46, 2043–2047. https://doi.org/10.1038/s41386-021-00982-y.
Leitner, M. G., Michel, N., Behrendt, M., Dierich, M., Dembla, S., Wilke, B. U., Konrad, M., Lindner, M., Oberwinkler, J., & Oliver, D. (2016). Direct modulation of TRPM4 and TRPM3 channels by the phospholipase C inhibitor U73122. British Journal of Pharmacology, 173, 2555–2569. https://doi.org/10.1111/bph.13538.
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611. https://doi.org/10.1111/bph.15178.
Liput, D. J., Puhl, H. L., Dong, A., He, K., Li, Y., & Lovinger, D. M. (2022). 2‐Arachidonoylglycerol mobilization following brief synaptic stimulation in the dorsal lateral striatum requires glutamatergic and cholinergic neurotransmission. Neuropharmacology, 205, 108916. https://doi.org/10.1016/j.neuropharm.2021.108916.
Liu, Z., Yang, N., Dong, J., Tian, W., Chang, L., Ma, J., Guo, J., Tan, J., Dong, A., He, K., Zhou, J., Cinar, R., Wu, J., Salinas, A. G., Sun, L., Kumar, M., Sullivan, B. T., Oldham, B. B., Pitz, V., … Tang, B. (2022). Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction. Nature Communications, 13, 3490. https://doi.org/10.1038/s41467-022-31168-9.
Lu, H.‐C., & Mackie, K. (2016). An introduction to the endogenous cannabinoid system. Biological Psychiatry, 79, 516–525. https://doi.org/10.1016/j.biopsych.2015.07.028.
Lu, H.‐C., & Mackie, K. (2021). Review of the endocannabinoid system. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6, 607–615. https://doi.org/10.1016/j.bpsc.2020.07.016.
Malamas, M. S., Lamani, M., Farah, S. I., Mohammad, K. A., Miyabe, C. Y., Weerts, C. M., Speziale, M., Hilston, S., Zvonok, N., Chandrashekhar, H., Ploss, M., Straiker, A., & Makriyannis, A. (2021). Design and synthesis of highly potent and specific ABHD6 inhibitors. ChemMedChem, 18, 116244. https://doi.org/10.1016/j.bmc.2021.116244.
Marrs, W. R., Blankman, J. L., Horne, E. A., Thomazeau, A., Lin, Y. H., Coy, J., Bodor, A. L., Muccioli, G. G., Hu, S. S. J., Woodruff, G., Fung, S., Lafourcade, M., Alexander, J. P., Long, J. Z., Li, W., Xu, C., Möller, T., Mackie, K., Manzoni, O. J., … Stella, N. (2010). The serine hydrolase ABHD6 controls the accumulation and efficacy of 2‐AG at cannabinoid receptors. Nature Neuroscience, 13, 951–957. https://doi.org/10.1038/nn.2601.
Michel, A. D., & Fonfria, E. (2007). Agonist potency at P2X7 receptors is modulated by structurally diverse lipids. British Journal of Pharmacology, 152, 523–537. https://doi.org/10.1038/sj.bjp.0707417.
Miras‐Portugal, M. T., Diaz‐Hernandez, J. I., Gomez‐Villafuertes, R., Diaz‐Hernandez, M., Artalejo, A. R., & Gualix, J. (2015). Role of P2X7 and P2Y2 receptors on α‐secretase‐dependent APP processing: Control of amyloid plaques formation “in vivo” by P2X7 receptor. Computational and Structural Biotechnology Journal, 13, 176–181. https://doi.org/10.1016/j.csbj.2015.02.005.
Mitrirattanakul, S., Ramakul, N., Guerrero, A. V., Matsuka, Y., Ono, T., Iwase, H., Mackie, K., Faull, K. F., & Spigelman, I. (2006). Site‐specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain, 126, 102–114. https://doi.org/10.1016/j.pain.2006.06.016.
Muñoz, M. F., Griffith, T. N., & Contreras, J. E. (2021). Mechanisms of ATP release in pain: Role of pannexin and connexin channels. Purinergic Signal, 17, 549–561. https://doi.org/10.1007/s11302-021-09822-6.
North, R. A., & Surprenant, A. (2000). Pharmacology of cloned P2X receptors. Annual Review of Pharmacology and Toxicology, 40, 563–580. https://doi.org/10.1146/annurev.pharmtox.40.1.563.
Ogasawara, D., Deng, H., Viader, A., Baggelaar, M. P., Breman, A., den Dulk, H., van den Nieuwendijk, A. M. C. H., Soethoudt, M., van der Wel, T., Zhou, J., Overkleeft, H. S., Sanchez‐Alavez, M., Mori, S., Nguyen, W., Conti, B., Liu, X., Chen, Y., Liu, Q. S., Cravatt, B. F., & van der Stelt, M. (2016). Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 113, 26–33. https://doi.org/10.1073/pnas.1522364112.
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410.
Powis, G., Seewald, M. J., Gratas, C., Melder, D. C., Riebow, J. F., & Modest, E. J. (1992). Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Research, 52(10), 2835–2840.
Rassendren, F., Buell, G. N., Virginio, C., Collo, G., North, R. A., & Surprenant, A. (1997). The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. The Journal of Biological Chemistry, 272, 5482–5486. https://doi.org/10.1074/jbc.272.9.5482.
Ravotto, L., Duffet, L., Zhou, X., Weber, B., & Patriarchi, T. (2020). A bright and colorful future for G‐protein coupled receptor sensors. Frontiers in Cellular Neuroscience, 14, 67. https://doi.org/10.3389/fncel.2020.00067.
Reigada, D., Navarro‐Ruiz, R. M., Caballero‐López, M. J., Del Águila, Á., Muñoz‐Galdeano, T., Maza, R. M., & Nieto‐Díaz, M. (2017). Diadenosine tetraphosphate (Ap(4)A) inhibits ATP‐induced excitotoxicity: A neuroprotective strategy for traumatic spinal cord injury treatment. Purinergic Signal, 13, 75–87. https://doi.org/10.1007/s11302-016-9541-4.
Ren, W. J., & Illes, P. (2022). Involvement of P2X7 receptors in chronic pain disorders. Purinergic Signal, 18, 83–92. https://doi.org/10.1007/s11302-021-09796-5.
Rinaldi‐Carmona, M., Barth, F., Héaulme, M., Shire, D., Calandra, B., Congy, C., Martinez, S., Maruani, J., Néliat, G., Caput, D., Ferrara, P., Soubrié, P., Brelière, J. C., & le Fur, G. (1994). SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Letters, 350, 240–244. https://doi.org/10.1016/0014-5793(94)00773-X.
Rodrigues, R. J., Tomé, A. R., & Cunha, R. A. (2015). ATP as a multi‐target danger signal in the brain. Frontiers in Neuroscience, 9, 148.
Sano, A., Zhu, X., Sano, H., Muñoz, N. M., Boetticher, E., & Leff, A. R. (2001). Regulation of eosinophil function by phosphatidylinositol‐specific PLC and cytosolic PLA(2). American Journal of Physiology. Lung Cellular and Molecular Physiology, 281, L844–L851. https://doi.org/10.1152/ajplung.2001.281.4.L844.
Shim, J.‐Y., Bertalovitz, A. C., & Kendall, D. A. (2011). Identification of essential cannabinoid‐binding domains: Structural insights into early dynamic events in receptor activation. The Journal of Biological Chemistry, 286, 33422–33435. https://doi.org/10.1074/jbc.M111.261651.
Shonesy, B. C., Winder, D. G., Patel, S., & Colbran, R. J. (2015). The initiation of synaptic 2‐AG mobilization requires both an increased supply of diacylglycerol precursor and increased postsynaptic calcium. Neuropharmacology, 91, 57–62. https://doi.org/10.1016/j.neuropharm.2014.11.026.
Singh, S., Sarroza, D., English, A., McGrory, M., Dong, A., Zweifel, L., Land, B. B., Li, Y., Bruchas, M. R., & Stella, N. (2023). Pharmacological characterization of the endocannabinoid sensor GRAB (eCB2.0). Cannabis and Cannabinoid Research, Online ahead of print. https://doi.org/10.1089/can.2023.0036.
Sink, K. S., McLaughlin, P. J., Wood, J. A., Brown, C., Fan, P., Vemuri, V. K., Pang, Y., Olzewska, T., Thakur, G. A., Makriyannis, A., Parker, L. A., & Salamone, J. D. (2008). The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food‐reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology, 33, 946–955. https://doi.org/10.1038/sj.npp.1301476.
Slivicki, R. A., Iyer, V., Mali, S. S., Garai, S., Thakur, G. A., Crystal, J. D., & Hohmann, A. G. (2020). Positive allosteric modulation of CB1 cannabinoid receptor signaling enhances morphine antinociception and attenuates morphine tolerance without enhancing morphine‐induced dependence or reward. Frontiers in Molecular Neuroscience, 13, 54. https://doi.org/10.3389/fnmol.2020.00054.
Steffens, M., Zentner, J., Honegger, J., & Feuerstein, T. J. (2005). Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor. Biochemical Pharmacology, 69, 169–178. https://doi.org/10.1016/j.bcp.2004.08.033.
Stella, N., Schweitzer, P., & Piomelli, D. (1997). A second endogenous cannabinoid that modulates long‐term potentiation. Nature, 388, 773–778. https://doi.org/10.1038/42015.
Tanaka, M., Sackett, S., & Zhang, Y. (2020). Endocannabinoid modulation of microglial phenotypes in neuropathology. Frontiers in Neurology, 11, 87. https://doi.org/10.3389/fneur.2020.00087.
Thompson, A., Mostafapour, S., Denlinger, L., Bleasdale, J., & Fisher, S. (1991). The aminosteroid U‐73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK‐N‐SH neuroblastoma cells. A role for Gp in receptor compartmentation. Journal of Biological Chemistry, 266, 23856–23862. https://doi.org/10.1016/S0021-9258(18)54362-3.
Walter, L., Dinh, T., & Stella, N. (2004). ATP induces a rapid and pronounced increase in 2‐arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. The Journal of Neuroscience, 24, 8068–8074. https://doi.org/10.1523/JNEUROSCI.2419-04.2004.
Wang, X., Arcuino, G., Takano, T., Lin, J., Peng, W. G., Wan, P., Li, P., Xu, Q., Liu, Q. S., Goldman, S. A., & Nedergaard, M. (2004). P2X7 receptor inhibition improves recovery after spinal cord injury. Nature Medicine, 10, 821–827. https://doi.org/10.1038/nm1082.
Witting, A., Walter, L., Wacker, J., Moller, T., & Stella, N. (2004). P2X7 receptors control 2‐arachidonoylglycerol production by microglial cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 3214–3219. https://doi.org/10.1073/pnas.0306707101.
Wu, P.‐Y., Lin, Y.‐C., Chang, C.‐L., Lu, H.‐T., Chin, C.‐H., Hsu, T.‐T., Chu, D., & Sun, S. H. (2009). Functional decreases in P2X7 receptors are associated with retinoic acid‐induced neuronal differentiation of Neuro‐2a neuroblastoma cells. Cellular Signalling, 21, 881–891. https://doi.org/10.1016/j.cellsig.2009.01.036.
Young, M. T., Pelegrin, P., & Surprenant, A. (2007). Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Molecular Pharmacology, 71, 92–100. https://doi.org/10.1124/mol.106.030163.
Zou, S., & Kumar, U. (2018). Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. International Journal of Molecular Sciences, 19, 833. https://doi.org/10.3390/ijms19030833.
معلومات مُعتمدة: DA033396 United States NH NIH HHS; DA047626 United States NH NIH HHS; DA055448 United States NH NIH HHS; NS118130 United States NH NIH HHS; T32GM007750 United States NH NIH HHS; 81821092 Science Fund for Creative Research Groups of the National Natural Science Foundation of China; NYKFKT2019013 Shenzhen-Hong Kong Institute of Brain Science; Z181100001318002 Beijing Municipal Science & Technology Commission; Z181100001518004 Beijing Municipal Science & Technology Commission; 31871087 National Natural Science Foundation of China; 31925017 National Natural Science Foundation of China; DA033396 United States NH NIH HHS; DA047626 United States NH NIH HHS; DA055448 United States NH NIH HHS; NS118130 United States NH NIH HHS; T32GM007750 United States NH NIH HHS; P30DA048736 University of Washington Center of Excellence in Opioid Addiction Research/Molecular Genetics Resource Core; 1U01NS113358 NIH BRAIN Initiative; Peking-Tsinghua Center for Life Sciences; State Key Laboratory of Membrane Biology at Peking University School of Life Sciences
فهرسة مساهمة: Keywords: 2‐AG; ATP; endocannabinoids; genetically encoded sensor; purinergic receptors
المشرفين على المادة: 0 (Endocannabinoids)
0 (Glycerides)
8D239QDW64 (glyceryl 2-arachidonate)
0 (Arachidonic Acids)
0 (Receptors, Purinergic P2X7)
8L70Q75FXE (Adenosine Triphosphate)
EC 3.1.1.23 (Monoacylglycerol Lipases)
EC 3.1.1.23 (ABHD6 protein, mouse)
0 (Receptor, Cannabinoid, CB1)
UR5G69TJKH (anandamide)
0 (Polyunsaturated Alkamides)
تواريخ الأحداث: Date Created: 20240406 Date Completed: 20240702 Latest Revision: 20240726
رمز التحديث: 20240726
DOI: 10.1111/bph.16348
PMID: 38581262
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5381
DOI:10.1111/bph.16348