دورية أكاديمية

Realizing the effect of s-block metals on a charge transfer crystal of indol-2-one for enhanced NLO responses with efficient energetic offsets.

التفاصيل البيبلوغرافية
العنوان: Realizing the effect of s-block metals on a charge transfer crystal of indol-2-one for enhanced NLO responses with efficient energetic offsets.
المؤلفون: Hassan AU; Lu'nan Research Institute of Beijing Institute of Technology, 888 Zhengtai Road, Tengzhou, 277599, People's Republic of China. Hassanabrar2016@gmail.com.; School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China. Hassanabrar2016@gmail.com., Sumrra SH; Department of Chemistry, University of Gujrat, Gujrat, 50700, Punjab, Pakistan. sajjadchemist@uog.edu.pk., Mohyuddin A; Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan., Nkungli NK; Department of Chemistry, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, Bamenda, Cameroon., Alhokbany N; Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
المصدر: Journal of molecular modeling [J Mol Model] 2024 Apr 06; Vol. 30 (5), pp. 126. Date of Electronic Publication: 2024 Apr 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9806569 Publication Model: Electronic Cited Medium: Internet ISSN: 0948-5023 (Electronic) Linking ISSN: 09485023 NLM ISO Abbreviation: J Mol Model Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer, c1996-
مستخلص: Context: Due to their unique photophysical properties, organic charge transfer crystals are becoming promising materials for next-generation optoelectronic devices. This research paper explores the impact of s-block metals on a charge transfer crystal of indol-2-one for enhanced nonlinear optical (NLO) responses with efficient energetic offsets. The study reveals that alkali metals can enhance NLO performance due to their free electrons.
Method: The Perdew-Burke-Ernzerhof functional of DFT with dispersion correction (D3) was used, and the λ max values ranged between 596 and 669 nm, with the highest value for dichloromethane (DCM). Leveraging the unique properties of metals allowed for the development of nonlinear optical materials with improved performance and versatility. Softness (σ) values provide insight into electron density changes, with higher values indicating a greater tendency for changes and lower values indicating the opposite. The NLO results for the chromophores MMI1-MMI6 show varying linear polarizability (< α 0  >) along with their first (β 0 ) and second (γ 0 ) hyperpolarizabilities. Chromophore MMI4 stands out with the highest NLO performance, having two potassium (K) atoms. Its < α 0  > , β 0 , and γ 0 values of 4.19, 7.09, and 17.43 (× 10 -24 e.s.u), respectively, indicate a significant enhancement in NLO response compared to the other chromophores. The transitions involving (O20)LP → (C3-N5)π* and (O19)LP → (N12-C13)π* exhibit the highest level of stabilization, followed by (O23)π → (C10-C11)π*, while (C6-N12)π → (C6-C7)π* shows the lowest level of stabilization for chromophore MMI4. The present research work is facile in its nature, and it can be helpful for synthetic scientist to design the new materials for uniting crystal properties with metal doping for efficient NLO devices.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Mahmood A, Abdullah MI, Khan SU-D (2015) Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor. Spectrochim Acta Part A Mol Biomol Spectrosc 139:425–430. https://doi.org/10.1016/j.saa.2014.12.038. (PMID: 10.1016/j.saa.2014.12.038)
Iqbal T, Haq KU, Irfan M et al (2023) Structural and optical investigations on ZnO-PVDF-NiO advanced polymer composites for modern electronic devices. Mater Res Express 10:045302. https://doi.org/10.1088/2053-1591/acc92b. (PMID: 10.1088/2053-1591/acc92b)
Li J, Yao H, Wang J et al (2023) Experimental demonstration of a free space optical wireless video transmission system based on image compression sensing algorithm. Opt Express 31:41479–41495. https://doi.org/10.1364/OE.502725. (PMID: 10.1364/OE.50272538087546)
Sun Y, Li Q, Kong L-J et al (2022) Universal classical optical computing inspired by quantum information process. Ann Phys 534:2200360. https://doi.org/10.1002/andp.202200360. (PMID: 10.1002/andp.202200360)
Mahmood A, Wang J-L (2021) Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ Sci 14:90–105. https://doi.org/10.1039/D0EE02838J. (PMID: 10.1039/D0EE02838J)
Zhong Q (2023) Lone-pair, electron-dominated, nonlinear optical responses in sulfur clusters and electric tunability properties. Phys Chem Chem Phys 25:29120–29126. https://doi.org/10.1039/D3CP03857B. (PMID: 10.1039/D3CP03857B37869890)
Zhong R-L, Xu H-L, Li Z-R, Su Z-M (2015) Role of excess electrons in nonlinear optical response. J Phys Chem Lett 6:612–619. (PMID: 10.1021/jz502588x26262475)
Hardhienata H, Ramdhani I, Alatas H et al (2023) Investigating the photovoltaic performance in ABO3 structures via the nonlinear bond model for an arbitrary incoming light polarization. Micromachines 14:2063. https://doi.org/10.3390/mi14112063. (PMID: 10.3390/mi141120633800492010673416)
Mahmood A, Irfan A (2020) Effect of fluorination on exciton binding energy and electronic coupling in small molecule acceptors for organic solar cells. Comput Theor Chem 1179:112797. https://doi.org/10.1016/j.comptc.2020.112797. (PMID: 10.1016/j.comptc.2020.112797)
Tasaganva RG, Kariduraganavar MY, Kamble RR, Inamdar SR (2011) Development of novel crosslinkable polymers for second-order nonlinear optical devices. Synth Met 161:1787–1799. https://doi.org/10.1016/j.synthmet.2011.05.006. (PMID: 10.1016/j.synthmet.2011.05.006)
Alkhalifah MA, Sheikh NS, Al-Faiyz YSS et al (2023) Rational design, stabilities and nonlinear optical properties of non-conventional transition metalides; new entry into nonlinear optical materials. Materials 16:3447. https://doi.org/10.3390/ma16093447. (PMID: 10.3390/ma160934473717632810180138)
Yang C, An Q, Bai H-R et al (2021) A synergistic strategy of manipulating the number of selenophene units and dissymmetric central core of small molecular acceptors enables polymer solar cells with 17.5 % efficiency. Angew Chem Int Ed 60:19241–19252. https://doi.org/10.1002/anie.202104766. (PMID: 10.1002/anie.202104766)
Wan S-S, Zhao Q, Jiang Z et al (2021) Selenium-containing two-dimensional conjugated fused-ring electron acceptors for enhanced crystal packing, charge transport, and photovoltaic performance. J Mater Chem A 9:15665–15677. https://doi.org/10.1039/D1TA03196A. (PMID: 10.1039/D1TA03196A)
Rasmussen TP, Echarri AR, de Abajo FJG, Cox JD (2023) Nonlocal and cascaded effects in nonlinear graphene nanoplasmonics. Nanoscale 15:3150–3158. https://doi.org/10.1039/D2NR06286K. (PMID: 10.1039/D2NR06286K36648761)
Zhou Y, Cheng B, Huang S et al (2023) The tunable electronic and optical properties of two-dimensional bismuth oxyhalides. Nanomaterials 13:2798. https://doi.org/10.3390/nano13202798. (PMID: 10.3390/nano132027983788794810609128)
Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. (PMID: 10.1063/1.478522)
Frisch JM, Trucks WG, Schlegel BH, others (2013) Gaussian 09, revision D. 01. Gauss. Inc, Wallingford CT.
Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Dispersion-corrected mean-field electronic structure methods. Chem Rev 116:5105–5154. https://doi.org/10.1021/acs.chemrev.5b00533. (PMID: 10.1021/acs.chemrev.5b0053327077966)
Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113:2019–2039. https://doi.org/10.1002/qua.24438. (PMID: 10.1002/qua.24438)
Barnham KWJ, Braun B, Nelson J et al (1991) Short-circuit current and energy efficiency enhancement in a low-dimensional structure photovoltaic device. Appl Phys Lett 59:135–137. https://doi.org/10.1063/1.105553. (PMID: 10.1063/1.105553)
M. Jacob J, Kumar Ravva M, (2022) Theoretical insights into molecular design of hot-exciton based thermally activated delayed fluorescence molecules. Mater Adv 3:4954–4963. https://doi.org/10.1039/D2MA00039C. (PMID: 10.1039/D2MA00039C)
Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885. (PMID: 10.1002/jcc.2288522162017)
Steinmann SN, Mo Y, Corminboeuf C (2011) How do electron localization functions describe π-electron delocalization? Phys Chem Chem Phys 13:20584–20592. https://doi.org/10.1039/C1CP21055F. (PMID: 10.1039/C1CP21055F21660323)
Klamt A, Moya C, Palomar J (2015) A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach. J Chem Theory Comput 11:4220–4225. https://doi.org/10.1021/acs.jctc.5b00601. (PMID: 10.1021/acs.jctc.5b0060126575917)
Luo J, Xue ZQ, Liu WM et al (2006) Koopmans’ theorem for large molecular systems within density functional theory. J Phys Chem A 110:12005–12009. (PMID: 10.1021/jp063669m17064189)
Hassan AU, Sumrra SH, Mustafa G et al (2023) Creating intense and refined NLO responses by utilizing dual donor structural designs in A-π-D-π-D-π-A type organic switches: computed device parameters. Struct Chem 34:2021–2038. https://doi.org/10.1007/s11224-023-02138-8. (PMID: 10.1007/s11224-023-02138-8)
Hassan AU, Sumrra SH (2024) Structure-based screening of sp2 hybridized small donor bridges as donor: acceptor switches for optical and photovoltaic applications: DFT way. J Mol Model 30:36. https://doi.org/10.1007/s00894-024-05836-0. (PMID: 10.1007/s00894-024-05836-038206469)
Parr RG, Szentpály LV, Liu S, (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x. (PMID: 10.1021/ja983494x)
Hassan AU, Sumrra SH, Mustafa G et al (2024) Novel pull–push solar switches with a D-π-D-π-A framework of the thiophene core: computed absorbance/fluorescence ability with device parameters. Struct Chem 35:47–64. https://doi.org/10.1007/s11224-023-02172-6. (PMID: 10.1007/s11224-023-02172-6)
Hassan AU, Sumrra SH, Mohyuddin A, Alshehri SM (2024) Solvent-assisted investigation of NLO responses of 3,5-dihydroxybenzoic acid and pyrazine-2-carboxamide cocrystal. Struct Chem https://doi.org/10.1007/s11224-024-02297-2.
Hassan AU, Sumrra SH, Zubair M, et al (2023) Design and exploration of benzene like azobis triazoles for long-range push-pull photo-switching attributes. J Fluoresc https://doi.org/10.1007/s10895-023-03532-5.
Hassan AU, Sumrra SH, Zafar M et al (2023) DFT-guided structural modeling of end-group acceptors at Y123 core for sensitizers as high-performance organic solar dyes and NLO responses. J Mol Model 29:262. https://doi.org/10.1007/s00894-023-05668-4. (PMID: 10.1007/s00894-023-05668-437490167)
Ahmad N, Zhou H, Fan P, Liang G (2022) Recent progress in cathode interlayer materials for non-fullerene organic solar cells. EcoMat 4:e12156. https://doi.org/10.1002/eom2.12156. (PMID: 10.1002/eom2.12156)
Güleryüz C, Sumrra SH, Hassan AU et al (2024) Excited state dependent fast switching NLO behavior investigation of sp2 hybridized donor crystal as D-π-A push–pull switches. Results Chem 7:101382. https://doi.org/10.1016/j.rechem.2024.101382. (PMID: 10.1016/j.rechem.2024.101382)
Mahmood A, Khan SU-D, Rana UA et al (2015) Effect of thiophene rings on UV/visible spectra and non-linear optical (NLO) properties of triphenylamine based dyes: a quantum chemical perspective. J Phys Org Chem 28:418–422. https://doi.org/10.1002/poc.3427. (PMID: 10.1002/poc.3427)
Hassan AU, Sumrra SH, Mustafa G et al (2023) Enhancing NLO performance by utilizing Tyrian purple dye as donor moiety in organic DSSCs with end capped acceptors: a theoretical study. J Mol Graph Model 124:108538. https://doi.org/10.1016/j.jmgm.2023.108538. (PMID: 10.1016/j.jmgm.2023.10853837327646)
Hassan AU, Sumrra SH, Mustafa G et al (2022) Efficient and tunable enhancement of NLO performance for indaceno-based donor moiety in A-π-D-π-D-π-A type first DSSC design by end-capped acceptors. J Mol Model 29:4. https://doi.org/10.1007/s00894-022-05402-6. (PMID: 10.1007/s00894-022-05402-636481993)
Abudurusuli A, Li J, Pan S (2021) A review on the recently developed promising infrared nonlinear optical materials. Dalton Trans 50:3155–3160. (PMID: 10.1039/D1DT00054C33564814)
Hassan AU, Nkungli N, Güleryüz C (2023) Computational designing of deferiprone based novel drugs as efficient anti-Parkinson agents. Bull Lat Am Res 53:157–162. https://doi.org/10.52292/j.laar.2023.986. (PMID: 10.52292/j.laar.2023.986)
Bjorklund GC (1991) Organic nonlinear optical materials and devices for optoelectronics. In: Garmire E, Maradudin AA, Rebane KK (eds) Laser optics of condensed matter, vol 2. the physics of optical phenomena and their use as probes of matter. Springer, US, Boston, MA, pp 229–229. (PMID: 10.1007/978-1-4615-3726-7_33)
Rasul R, Mahmood T, Ayub K, et al (2023) Alkali metals doped cycloparaphenylene nanohoops: promising nonlinear optical materials with enhanced performance. Heliyon 9 https://doi.org/10.1016/j.heliyon.2023.e21508.
Tanaka H, Watanabe H, Yanase Y (2023) Nonlinear optical responses in noncentrosymmetric superconductors. Phys Rev B 107:024513. https://doi.org/10.1103/PhysRevB.107.024513. (PMID: 10.1103/PhysRevB.107.024513)
Borowski K, Łukasik M (2017) Analysis of selected seasonality effects in the following metal markets: gold, silver, platinum, palladium and copper. J Manag Financial Sci 59–86. https://doi.org/10.33119/JMFS.2017.27.4.
Echarri AR, Gonçalves PAD, Tserkezis C, et al (2021) Optical response of noble metal nanostructures: quantum surface effects in crystallographic facets. Opt 8:710–721. https://doi.org/10.1364/OPTICA.412122. (PMID: 10.1364/OPTICA.412122)
Hassan AU, Guleryuz C (2021) Theoretical evaluation of the permeability of discharge item (LiOOH) in Li-O-2 batteries. Lat Am Appl Res 51:153–157.
Hassan AU, Sumrra SH (2022) Exploration of pull–push effect for novel photovoltaic dyes with A–π–D design: a DFT/TD-DFT investigation.  Fluoresc https://doi.org/10.1007/s10895-022-03003-3.
Cheng P, Zhan X (2016) Stability of organic solar cells: challenges and strategies. Chem Soc Rev 45:2544–2582. https://doi.org/10.1039/C5CS00593K. (PMID: 10.1039/C5CS00593K26890341)
Li Y, Ullrich CA (2011) Time-dependent transition density matrix. Chem Phys 391:157–163. https://doi.org/10.1016/j.chemphys.2011.02.001. (PMID: 10.1016/j.chemphys.2011.02.001)
Ahmad N, Kausar A, Muhammad B (2016) An investigation on 4-aminobenzoic acid modified polyvinyl chloride/graphene oxide and PVC/graphene oxide based nanocomposite membranes. J Plast Film Sheeting 32:419–448. https://doi.org/10.1177/8756087915616434. (PMID: 10.1177/8756087915616434)
Zhang C, Song X, Liu K-K et al (2020) Electron-deficient and quinoid central unit engineering for unfused ring-based A1–D–A2–D–A1-type acceptor enables high performance nonfullerene polymer solar cells with high VOC and PCE simultaneously. Small 16:1907681. https://doi.org/10.1002/smll.201907681. (PMID: 10.1002/smll.201907681)
Barhum H, McDonnell C, Alon T et al (2023) Organic kainate single crystals for second-harmonic and broadband THz generation. ACS Appl Mater Interfaces 15:8590–8600. https://doi.org/10.1021/acsami.2c18454. (PMID: 10.1021/acsami.2c18454367297209940106)
Koohi M, Bastami H (2020) Substituent effects on stability, MEP, NBO analysis, and reactivity of 2, 2, 9, 9-tetrahalosilacyclonona-3, 5, 7-trienylidenes, at density functional theory. Monatshefte für Chemie-Chemical Monthly 151:11–23. (PMID: 10.1007/s00706-019-02537-w)
Hassan AU, Sumrra SH, Mustafa G et al (2023) Molecular modeling of mordant black dye for future applications as visible light harvesting materials with anchors: design and excited state dynamics. J Mol Model 29:74. https://doi.org/10.1007/s00894-023-05474-y. (PMID: 10.1007/s00894-023-05474-y36826696)
Shimpi MT, Sajjad M, Öberg S, Larsson JA (2023) Physical binding energies using the electron localization function in 4-hydroxyphenylboronic acid co-crystals with aza donors. J Phys: Condens Matter 35:505901. https://doi.org/10.1088/1361-648X/acf638. (PMID: 10.1088/1361-648X/acf638)
Hassan AU, Sumrra SH, Nkungli NK, Güleryüz C (2022) Theoretical probing of 3d nano metallic clusters as next generation non-linear optical materials. Results Chem 100627. https://doi.org/10.1016/j.rechem.2022.100627.
Tsirelson VG, Stash A (2002) Analyzing experimental electron density with the localized-orbital locator. Acta Cryst B 58:780–785. https://doi.org/10.1107/S0108768102012338. (PMID: 10.1107/S0108768102012338)
فهرسة مساهمة: Keywords: Alkali metals; DFT; NBO; NLO; Softness
تواريخ الأحداث: Date Created: 20240406 Latest Revision: 20240510
رمز التحديث: 20240510
DOI: 10.1007/s00894-024-05923-2
PMID: 38581440
قاعدة البيانات: MEDLINE