دورية أكاديمية

A lipid atlas of human and mouse immune cells provides insights into ferroptosis susceptibility.

التفاصيل البيبلوغرافية
العنوان: A lipid atlas of human and mouse immune cells provides insights into ferroptosis susceptibility.
المؤلفون: Morgan PK; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia., Pernes G; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.; Department of Immunology, Monash University, Melbourne, Victoria, Australia., Huynh K; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia., Giles C; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia., Paul S; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia., Smith AAT; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia., Mellett NA; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia., Liang A; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia., van Buuren-Milne T; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia., Veiga CB; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia., Collins TJC; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.; Department of Immunology, Monash University, Melbourne, Victoria, Australia., Xu Y; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia., Lee MKS; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia., De Silva TM; Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia., Meikle PJ; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia., Lancaster GI; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. Graeme.lancaster@baker.edu.au.; Department of Immunology, Monash University, Melbourne, Victoria, Australia. Graeme.lancaster@baker.edu.au.; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia. Graeme.lancaster@baker.edu.au., Murphy AJ; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. Andrew.murphy@baker.edu.au.; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia. Andrew.murphy@baker.edu.au.; Department of Immunology, Monash University, Melbourne, Victoria, Australia. Andrew.murphy@baker.edu.au.; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia. Andrew.murphy@baker.edu.au.
المصدر: Nature cell biology [Nat Cell Biol] 2024 Apr; Vol. 26 (4), pp. 645-659. Date of Electronic Publication: 2024 Apr 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Macmillan Magazines Ltd Country of Publication: England NLM ID: 100890575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4679 (Electronic) Linking ISSN: 14657392 NLM ISO Abbreviation: Nat Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Macmillan Magazines Ltd., [1999-
مواضيع طبية MeSH: Ferroptosis*, Humans ; Animals ; Mice ; Fatty Acids, Unsaturated
مستخلص: The cellular lipidome comprises thousands of unique lipid species. Here, using mass spectrometry-based targeted lipidomics, we characterize the lipid landscape of human and mouse immune cells ( www.cellularlipidatlas.com ). Using this resource, we show that immune cells have unique lipidomic signatures and that processes such as activation, maturation and development impact immune cell lipid composition. To demonstrate the potential of this resource to provide insights into immune cell biology, we determine how a cell-specific lipid trait-differences in the abundance of polyunsaturated fatty acid-containing glycerophospholipids (PUFA-PLs)-influences immune cell biology. First, we show that differences in PUFA-PL content underpin the differential susceptibility of immune cells to ferroptosis. Second, we show that low PUFA-PL content promotes resistance to ferroptosis in activated neutrophils. In summary, we show that the lipid landscape is a defining feature of immune cell identity and that cell-specific lipid phenotypes underpin aspects of immune cell physiology.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018). (PMID: 2941052910.1038/nrm.2017.138)
Holthuis, J. C. & Menon, A. K. Lipid landscapes and pipelines in membrane homeostasis. Nature 510, 48–57 (2014). (PMID: 2489930410.1038/nature13474)
Storck, E. M., Ozbalci, C. & Eggert, U. S. Lipid cell biology: a focus on lipids in cell division. Annu. Rev. Biochem. 87, 839–869 (2018). (PMID: 2949423710.1146/annurev-biochem-062917-012448)
Zhang, Q. et al. Biosynthesis and roles of phospholipids in mitochondrial fusion, division and mitophagy. Cell. Mol. Life Sci. 71, 3767–3778 (2014). (PMID: 24866973416276110.1007/s00018-014-1648-6)
Walpole, G. F. W. & Grinstein, S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res 9, 368 (2020). (PMID: 10.12688/f1000research.22393.1)
Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374 (2017). (PMID: 28356571550022810.1038/nrm.2017.16)
Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019). (PMID: 31117011672161710.1016/j.immuni.2019.04.018)
Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021). (PMID: 33495651814202210.1038/s41580-020-00324-8)
Chen, B., Sun, Y., Niu, J., Jarugumilli, G. K. & Wu, X. Protein lipidation in cell signaling and diseases: function, regulation, and therapeutic opportunities. Cell Chem. Biol. 25, 817–831 (2018). (PMID: 29861273605454710.1016/j.chembiol.2018.05.003)
Verkerke, A. R. P. & Kajimura, S. Oil does more than light the lamp: the multifaceted role of lipids in thermogenic fat. Dev. Cell 56, 1408–1416 (2021). (PMID: 34004150813246810.1016/j.devcel.2021.04.018)
Li, H. et al. The landscape of cancer cell line metabolism. Nat. Med. 25, 850–860 (2019). (PMID: 31068703662904110.1038/s41591-019-0404-8)
Surma, M. A. et al. Mouse lipidomics reveals inherent flexibility of a mammalian lipidome. Sci. Rep. 11, 19364 (2021). (PMID: 34588529848147110.1038/s41598-021-98702-5)
Alarcon-Barrera, J. C. et al. Lipid metabolism of leukocytes in the unstimulated and activated states. Anal. Bioanal. Chem. 412, 2353–2363 (2020). (PMID: 32055910711805210.1007/s00216-020-02460-8)
Liew, P. X. & Kubes, P. The neutrophil’s role during health and disease. Physiol. Rev. 99, 1223–1248 (2019). (PMID: 3075824610.1152/physrev.00012.2018)
Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191 (2018). (PMID: 2916542710.1038/nrm.2017.107)
Han, G. et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc. Natl Acad. Sci. USA 106, 8186–8191 (2009). (PMID: 19416851268882210.1073/pnas.0811269106)
Karsai, G. et al. FADS3 is a Δ14Z sphingoid base desaturase that contributes to gender differences in the human plasma sphingolipidome. J. Biol. Chem. 295, 1889–1897 (2020). (PMID: 3186273510.1074/jbc.AC119.011883)
Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017). (PMID: 28606987550243610.1084/jem.20170355)
Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e8 (2018). (PMID: 2946675910.1016/j.immuni.2018.02.002)
Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017). (PMID: 2784206610.1038/nchembio.2238)
Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020). (PMID: 32939090805186410.1038/s41586-020-2732-8)
Xu, L., Davis, T. A. & Porter, N. A. Rate constants for peroxidation of polyunsaturated fatty acids and sterols in solution and in liposomes. J. Am. Chem. Soc. 131, 13037–13044 (2009). (PMID: 1970584710.1021/ja9029076)
Yin, H., Xu, L. & Porter, N. A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972 (2011). (PMID: 2186145010.1021/cr200084z)
Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019). (PMID: 31634900688316710.1038/s41586-019-1705-2)
Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019). (PMID: 3163489910.1038/s41586-019-1707-0)
Soula, M. et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351–1360 (2020). (PMID: 32778843829953310.1038/s41589-020-0613-y)
Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021). (PMID: 33981038889568610.1038/s41586-021-03539-7)
Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017). (PMID: 2784207010.1038/nchembio.2239)
Drijvers, J. M. et al. Pharmacologic screening identifies metabolic vulnerabilities of CD8 + T cells. Cancer Immunol. Res. 9, 184–199 (2021). (PMID: 3327723310.1158/2326-6066.CIR-20-0384)
Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020). (PMID: 3198902510.1021/acscentsci.9b01063)
Yang, W. S. et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl Acad. Sci. USA 113, E4966–E4975 (2016). (PMID: 27506793500326110.1073/pnas.1603244113)
Canli, O. et al. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32, 869–883.e5 (2017). (PMID: 2923255710.1016/j.ccell.2017.11.004)
Jia, M. et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat. Immunol. 21, 727–735 (2020). (PMID: 3254183110.1038/s41590-020-0699-0)
Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015). (PMID: 25824823438728710.1084/jem.20140857)
Xu, C. et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain T reg cell activation and suppression of antitumor immunity. Cell Rep. 35, 109235 (2021). (PMID: 3413392410.1016/j.celrep.2021.109235)
Ramesha, C. S. & Pickett, W. C. Fatty acid composition of diacyl, alkylacyl, and alkenylacyl phospholipids of control and arachidonate-depleted rat polymorphonuclear leukocytes. J. Lipid Res. 28, 326–331 (1987). (PMID: 310655110.1016/S0022-2275(20)38700-9)
Mueller, H. W., O’Flaherty, J. T. & Wykle, R. L. Ether lipid content and fatty acid distribution in rabbit polymorphonuclear neutrophil phospholipids. Lipids 17, 72–77 (1982). (PMID: 708768510.1007/BF02535178)
Paul, S., Lancaster, G. I. & Meikle, P. J. Plasmalogens: a potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog. Lipid Res. 74, 186–195 (2019). (PMID: 3097412210.1016/j.plipres.2019.04.003)
Dean, J. M. & Lodhi, I. J. Structural and functional roles of ether lipids. Protein Cell 9, 196–206 (2018). (PMID: 2852343310.1007/s13238-017-0423-5)
Albert, C. J., Crowley, J. R., Hsu, F. F., Thukkani, A. K. & Ford, D. A. Reactive brominating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens: disparate utilization of sodium halides in the production of α-halo fatty aldehydes. J. Biol. Chem. 277, 4694–4703 (2002). (PMID: 1183625910.1074/jbc.M110875200)
Albert, C. J. et al. Eosinophil peroxidase-derived reactive brominating species target the vinyl ether bond of plasmalogens generating a novel chemoattractant, α-bromo fatty aldehyde. J. Biol. Chem. 278, 8942–8950 (2003). (PMID: 1264328210.1074/jbc.M211634200)
Thukkani, A. K. et al. Reactive chlorinating species produced during neutrophil activation target tissue plasmalogens: production of the chemoattractant, 2-chlorohexadecanal. J. Biol. Chem. 277, 3842–3849 (2002). (PMID: 1172479210.1074/jbc.M109489200)
Lodhi, I. J. et al. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab. 21, 51–64 (2015). (PMID: 25565205428727410.1016/j.cmet.2014.12.002)
Dorninger, F., Wiesinger, C., Braverman, N. E., Forss-Petter, S. & Berger, J. Ether lipid deficiency does not cause neutropenia or leukopenia in mice and men. Cell Metab. 21, 650–651 (2015). (PMID: 25955198488565910.1016/j.cmet.2015.04.014)
Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8 + T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012.e5 (2021). (PMID: 33691090810236810.1016/j.cmet.2021.02.015)
Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8 + T cells in tumors. Immunity 54, 1561–1577.e7 (2021). (PMID: 34102100927302610.1016/j.immuni.2021.05.003)
Yao, Y. et al. Selenium–GPX4 axis protects follicular helper T cells from ferroptosis. Nat. Immunol. 22, 1127–1139 (2021). (PMID: 3441352110.1038/s41590-021-00996-0)
Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014). (PMID: 24439385407641410.1016/j.cell.2013.12.010)
Burn, G. L., Foti, A., Marsman, G., Patel, D. F. & Zychlinsky, A. The neutrophil. Immunity 54, 1377–1391 (2021). (PMID: 3426088610.1016/j.immuni.2021.06.006)
Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020). (PMID: 32814895748446810.1038/s41586-020-2623-z)
Nguyen, G. T., Green, E. R. & Mecsas, J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell. Infect. Microbiol. 7, 373 (2017). (PMID: 28890882557487810.3389/fcimb.2017.00373)
Weir, J. M. et al. Plasma lipid profiling in a large population-based cohort. J. Lipid Res. 54, 2898–2908 (2013). (PMID: 23868910377010210.1194/jlr.P035808)
Huynh, K. et al. High-throughput plasma lipidomics: detailed mapping of the associations with cardiometabolic risk factors. Cell Chem. Biol. 26, 71–84.e4 (2019). (PMID: 3041596510.1016/j.chembiol.2018.10.008)
Brugger, B., Erben, G., Sandhoff, R., Wieland, F. T. & Lehmann, W. D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl Acad. Sci. USA 94, 2339–2344 (1997). (PMID: 91221962008910.1073/pnas.94.6.2339)
Koivusalo, M., Haimi, P., Heikinheimo, L., Kostiainen, R. & Somerharju, P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 42, 663–672 (2001). (PMID: 1129083910.1016/S0022-2275(20)31176-7)
Fahy, E. et al. A comprehensive classification system for lipids. J. Lipid Res. 46, 839–861 (2005). (PMID: 1572256310.1194/jlr.E400004-JLR200)
Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50, S9–S14 (2009). (PMID: 19098281267471110.1194/jlr.R800095-JLR200)
Liebisch, G. et al. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 54, 1523–1530 (2013). (PMID: 23549332364645310.1194/jlr.M033506)
Alshehry, Z. H. et al. An efficient single phase method for the extraction of plasma lipids. Metabolites 5, 389–403 (2015). (PMID: 26090945449537910.3390/metabo5020389)
Deshwal, S. et al. Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7. Nat. Cell Biol. 25, 246–257 (2023). (PMID: 366582229928583)
Zhang, L. et al. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development.Nat. Cell Biol. 26, 278–293 (2024). (PMID: 3830272110.1038/s41556-023-01341-3)
معلومات مُعتمدة: GNT1189012 Department of Health | National Health and Medical Research Council (NHMRC); GNT1197190 Department of Health | National Health and Medical Research Council (NHMRC); GNT2009965 Department of Health | National Health and Medical Research Council (NHMRC); GNT1194329 Department of Health | National Health and Medical Research Council (NHMRC); Operational support program State Government of Victoria (Victorian Government)
المشرفين على المادة: 0 (Fatty Acids, Unsaturated)
تواريخ الأحداث: Date Created: 20240408 Date Completed: 20240418 Latest Revision: 20240419
رمز التحديث: 20240420
DOI: 10.1038/s41556-024-01377-z
PMID: 38589531
قاعدة البيانات: MEDLINE