دورية أكاديمية

Tau pathology is associated with synaptic density and longitudinal synaptic loss in Alzheimer's disease.

التفاصيل البيبلوغرافية
العنوان: Tau pathology is associated with synaptic density and longitudinal synaptic loss in Alzheimer's disease.
المؤلفون: Wang J; Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China., Huang Q; Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China., Chen X; Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 310000, China., You Z; Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 310000, China., He K; Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China., Guo Q; Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China., Huang Y; PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, CT, 06520-8048, USA., Yang Y; Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, 100089, China., Lin Z; Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, 201807, China., Guo T; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518000, China., Zhao J; Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 310000, China., Guan Y; Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China. guanyihui@hotmail.com., Li B; Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. libinyin@126.com., Xie F; Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China. Fangxie@fudan.edu.cn.
المصدر: Molecular psychiatry [Mol Psychiatry] 2024 Sep; Vol. 29 (9), pp. 2799-2809. Date of Electronic Publication: 2024 Apr 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Specialist Journals Country of Publication: England NLM ID: 9607835 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5578 (Electronic) Linking ISSN: 13594184 NLM ISO Abbreviation: Mol Psychiatry Subsets: MEDLINE
أسماء مطبوعة: Publication: 2000- : Houndmills, Basingstoke, UK : Nature Publishing Group Specialist Journals
Original Publication: Houndmills, Hampshire, UK ; New York, NY : Stockton Press, c1996-
مواضيع طبية MeSH: Alzheimer Disease*/metabolism , Alzheimer Disease*/pathology , Alzheimer Disease*/diagnostic imaging , tau Proteins*/metabolism , Amyloid beta-Peptides*/metabolism , Synapses*/metabolism , Synapses*/pathology , Cognitive Dysfunction*/metabolism , Positron-Emission Tomography*/methods, Humans ; Female ; Male ; Aged ; Middle Aged ; Plaque, Amyloid/metabolism ; Plaque, Amyloid/pathology ; Brain/metabolism ; Brain/pathology ; Brain/diagnostic imaging ; Aged, 80 and over ; Positron Emission Tomography Computed Tomography/methods ; Magnetic Resonance Imaging/methods
مستخلص: The associations of synaptic loss with amyloid-β (Aβ) and tau pathology measured by positron emission tomography (PET) and plasma analysis in Alzheimer's disease (AD) patients are unknown. Seventy-five participants, including 26 AD patients, 19 mild cognitive impairment (MCI) patients, and 30 normal controls (NCs), underwent [ 18 F]SynVesT-1 PET/MR scans to assess synaptic density and [ 18 F]florbetapir and [ 18 F]MK6240 PET/CT scans to evaluate Aβ plaques and tau tangles. Among them, 19 AD patients, 12 MCI patients, and 29 NCs had plasma Aβ42/40 and p-tau181 levels measured by the Simoa platform. Twenty-three individuals, 6 AD patients, 4 MCI patients, and 13 NCs, underwent [ 18 F]SynVesT-1 PET/MRI and [ 18 F]MK6240 PET/CT scans during a one-year follow-up assessment. The associations of Aβ and tau pathology with cross-sectional and longitudinal synaptic loss were investigated using Pearson correlation analyses, generalized linear models and mediation analyses. AD patients exhibited lower synaptic density than NCs and MCI patients. In the whole cohort, global Aβ deposition was associated with synaptic loss in the medial (r = -0.431, p < 0.001) and lateral (r = -0.406, p < 0.001) temporal lobes. Synaptic density in almost all regions was related to the corresponding regional tau tangles independent of global Aβ deposition in the whole cohort and stratified groups. Synaptic density in the medial and lateral temporal lobes was correlated with plasma Aβ42/40 (r = 0.300, p = 0.020/r = 0.289, p = 0.025) and plasma p-tau 181 (r = -0.412, p = 0.001/r = -0.529, p < 0.001) levels in the whole cohort. Mediation analyses revealed that tau tangles mediated the relationship between Aβ plaques and synaptic density in the whole cohort. Baseline tau pathology was positively associated with longitudinal synaptic loss. This study suggested that tau burden is strongly linked to synaptic density independent of Aβ plaques, and also can predict longitudinal synaptic loss.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Turab Naqvi AA, Hasan GM, Hassan MI. Targeting tau hyperphosphorylation via kinase inhibition: strategy to address Alzheimer’s disease. Curr Top Med Chem. 2020;20:1059–73. (PMID: 3190388110.2174/1568026620666200106125910)
Lee A, Kondapalli C, Virga D, Lewis T, Koo S, Ashok A, et al. Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun. 2022;13:4444. (PMID: 35915085934335410.1038/s41467-022-32130-5)
Lauterborn J, Cox C, Chan S, Vanderklish P, Lynch G, Gall C. Synaptic actin stabilization protein loss in down syndrome and Alzheimer disease. Brain Pathol. 2020;30:319–31. (PMID: 3141092610.1111/bpa.12779)
Coleman PD, Yao PJ. Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging. 2003;24:1023–7. (PMID: 1464337410.1016/j.neurobiolaging.2003.09.001)
Mecca A, O’Dell R, Sharp E, Banks E, Bartlett H, Zhao W, et al. Synaptic density and cognitive performance in Alzheimer’s disease: a PET imaging study with [C]UCB-J. Alzheimer’s Dement. 2022;18:2527–36. (PMID: 10.1002/alz.12582)
Selkoe D, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608. (PMID: 27025652488885110.15252/emmm.201606210)
Koffie R, Meyer-Luehmann M, Hashimoto T, Adams K, Mielke M, Garcia-Alloza M, et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA. 2009;106:4012–7. (PMID: 19228947265619610.1073/pnas.0811698106)
Forner S, Baglietto-Vargas D, Martini A, Trujillo-Estrada L, LaFerla F. Synaptic impairment in Alzheimer’s disease: a dysregulated symphony. Trends Neurosci. 2017;40:347–57. (PMID: 2849497210.1016/j.tins.2017.04.002)
Lan G, Cai Y, Li A, Liu Z, Ma S, Guo T. Association of presynaptic loss with Alzheimer’s disease and cognitive decline. Ann Neurol. 2022;92:1001–15. (PMID: 3605667910.1002/ana.26492)
Stout K, Dunn A, Hoffman C, Miller G. The synaptic vesicle glycoprotein 2: structure, function, and disease relevance. ACS Chem Neurosci. 2019;10:3927–38. (PMID: 3139403410.1021/acschemneuro.9b00351)
Finnema S, Nabulsi N, Eid T, Detyniecki K, Lin S, Chen M, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra396. (PMID: 10.1126/scitranslmed.aaf6667)
Chen M, Mecca A, Naganawa M, Finnema S, Toyonaga T, Lin S, et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. 2018;75:1215–24. (PMID: 30014145623385310.1001/jamaneurol.2018.1836)
Mecca A, Chen M, O’Dell R, Naganawa M, Toyonaga T, Godek T, et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimer’s Dement. 2020;16:974–82. (PMID: 10.1002/alz.12097)
Vanhaute H, Ceccarini J, Michiels L, Koole M, Sunaert S, Lemmens R, et al. In vivo synaptic density loss is related to tau deposition in amnestic mild cognitive impairment. Neurology. 2020;95:e545–e553. (PMID: 3249371710.1212/WNL.0000000000009818)
O’Dell R, Mecca A, Chen M, Naganawa M, Toyonaga T, Lu Y, et al. Association of Aβ deposition and regional synaptic density in early Alzheimer’s disease: a PET imaging study with [C]UCB-J. Alzheimer’s Res Ther. 2021;13:11. (PMID: 10.1186/s13195-020-00742-y)
Zhou L, McInnes J, Wierda K, Holt M, Herrmann A, Jackson R, et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun. 2017;8:15295. (PMID: 28492240543727110.1038/ncomms15295)
Hoover B, Reed M, Su J, Penrod R, Kotilinek L, Grant M, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68:1067–81. (PMID: 21172610302645810.1016/j.neuron.2010.11.030)
Gao F, Shang S, Chen C, Dang L, Gao L, Wei S, et al. Non-linear relationship between plasma amyloid-β 40 level and cognitive decline in a cognitively normal population. Front Aging Neurosci. 2020;12:557005. (PMID: 33061905751698310.3389/fnagi.2020.557005)
Guo Q, Zhao Q, Chen M, Ding D, Hong Z. A comparison study of mild cognitive impairment with 3 memory tests among Chinese individuals. Alzheimer Dis Assoc Disord. 2009;23:253–59.
Ding D, Zhao Q, Guo Q, Liang X, Luo J, Yu L, et al. Progression and predictors of mild cognitive impairment in Chinese elderly: a prospective follow-up in the Shanghai aging study. Alzheimer’s Dement. (Amsterdam, Netherlands) 2016;4:28–36.
Zhao Q, Guo Q, Hong Z. Clustering and switching during a semantic verbal fluency test contribute to differential diagnosis of cognitive impairment. Neurosci Bull. 2013;29:75–82. (PMID: 23322003556186210.1007/s12264-013-1301-7)
Zhao Q, Guo Q, Liang X, Chen M, Zhou Y, Ding D, et al. Auditory verbal learning test is superior to rey-osterrieth complex figure memory for predicting mild cognitive impairment to Alzheimer’s disease. Curr Alzheimer Res. 2015;12:520–6. (PMID: 2602781010.2174/1567205012666150530202729)
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. (PMID: 2151425010.1016/j.jalz.2011.03.005)
Jack C, Lowe V, Senjem M, Weigand S, Kemp B, Shiung M, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 2008;131:665–80. (PMID: 1826362710.1093/brain/awm336)
Bondi M, Edmonds E, Jak A, Clark L, Delano-Wood L, McDonald C, et al. Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J Alzheimer’s Dis. 2014;42:275–89. (PMID: 10.3233/JAD-140276)
Su H, Sun X, Li F, Guo Q. Handgrip strength could be an early predictor of cognitive impairment in the Chinese population. 2021. Preprint https://doi.org/10.21203/rs.3.rs-400381/v1 .
Lin L A. Conceptual framework for research on cognitive impairment with no dementia in memory clinic. Curr Alzheimer Res. 2020;17:517–25.
Sattlecker M, Khondoker M, Proitsi P, Williams S, Soininen H, Kłoszewska I, et al. Longitudinal protein changes in blood plasma associated with the rate of cognitive decline in Alzheimer’s disease. J Alzheimer’s Dis. 2016;49:1105–14. (PMID: 10.3233/JAD-140669)
Wilson D, Rissin D, Kan C, Fournier D, Piech T, Campbell T, et al. The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom. 2016;21:533–47. (PMID: 2607716210.1177/2211068215589580)
Pan F, Huang Q, Wang Y, Wang Y, Guan Y, Xie F, et al. Non-linear character of plasma amyloid beta over the course of cognitive decline in Alzheimer’s continuum. Front Aging Neurosci. 2022;14:832700. (PMID: 35401142898428510.3389/fnagi.2022.832700)
Zhang J, Wang J, Xu X, You Z, Huang Q, Huang Y, et al. In vivo synaptic density loss correlates with impaired functional and related structural connectivity in Alzheimer’s disease. J Cereb Blood Flow Metab. 2023;43:977–988.
Qi H, Ren S, Jiang D, Hua F. Changes in brain glucose metabolism and connectivity in somatoform disorders: an 18F-FDG PET study. Eur Arch Psychiatry Clin Neurosci. 2020;270:881–91. (PMID: 10.1007/s00406-019-01083-0)
Su J, Huang Q, Ren S, Xie F, Zhai Y, Guan Y, et al. Altered brain glucose metabolism assessed by F-FDG PET imaging is associated with the cognitive impairment of CADASIL. Neuroscience. 2019;417:35–44. (PMID: 3139419510.1016/j.neuroscience.2019.07.048)
Gonzalez-Escamilla G, Lange C, Teipel S, Buchert R, Grothe MJ. PETPVE12: an SPM toolbox for Partial Volume Effects correction in brain PET - application to amyloid imaging with AV45-PET. Neuroimage. 2017;147:669–77. (PMID: 2803909410.1016/j.neuroimage.2016.12.077)
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. (PMID: 1177199510.1006/nimg.2001.0978)
Lundeen T, Seibyl J, Covington M, Eshghi N, Kuo P. Signs and artifacts in amyloid PET. Radiographics. 2018;38:2123–33. (PMID: 3042276810.1148/rg.2018180160)
Minoshima S, Drzezga A, Barthel H, Bohnen N, Djekidel M, Lewis D, et al. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med. 2016;57:1316–22. (PMID: 2748160510.2967/jnumed.116.174615)
Krishnadas N, Huang K, Schultz S, Doré V, Bourgeat P, Goh A, et al. Visually identified tau 18F-MK6240 PET patterns in symptomatic Alzheimer’s disease. J Alzheimer’s Dis. 2022;88:1627–37. (PMID: 10.3233/JAD-215558)
Seibyl JP, DuBois JM, Racine A, Collins J, Guo Q, Wooten D, et al. A visual interpretation algorithm for assessing brain tauopathy with (18)F-MK-6240 PET. J Nucl Med. 2023;64:444–51. (PMID: 361751371007179510.2967/jnumed.122.264371)
Shuping J, Matthews D, Adamczuk K, Scott D, Rowe C, Kreisl W, et al. Development, initial validation, and application of a visual read method for [F]MK-6240 tau PET. Alzheimer’s Dement. 2023;9:e12372. (PMID: 10.1002/trc2.12372)
Soleimani-Meigooni D, Rabinovici G. Tau PET visual reads: research and clinical applications and future directions. J Nucl Med. 2023;64:822–4. (PMID: 371169101015212110.2967/jnumed.122.265017)
Coomans E, Schoonhoven D, Tuncel H, Verfaillie S, Wolters E, Boellaard R, et al. In vivo tau pathology is associated with synaptic loss and altered synaptic function. Alzheimer’s Res Ther. 2021;13:35. (PMID: 10.1186/s13195-021-00772-0)
Mielke MM, Frank RD, Dage JL, Jeromin A, Ashton NJ, Blennow K, et al. Comparison of plasma phosphorylated tau species with amyloid and tau positron emission tomography, neurodegeneration, vascular pathology, and cognitive outcomes. JAMA Neurol. 2021;78:1108–17. (PMID: 3430963210.1001/jamaneurol.2021.2293)
Bilgel M, An Y, Walker K, Moghekar A, Ashton N, Kac P, et al. Longitudinal changes in Alzheimer’s-related plasma biomarkers and brain amyloid. Alzheimer’s Dement. 2023;19:4335–45. (PMID: 10.1002/alz.13157)
Hyman B, Marzloff K, Arriagada P. The lack of accumulation of senile plaques or amyloid burden in Alzheimer’s disease suggests a dynamic balance between amyloid deposition and resolution. J Neuropathol Exp Neurol. 1993;52:594–600. (PMID: 822907810.1097/00005072-199311000-00006)
Jack C, Wiste H, Lesnick T, Weigand S, Knopman D, Vemuri P, et al. Brain β-amyloid load approaches a plateau. Neurology. 2013;80:890–6. (PMID: 23446680365321510.1212/WNL.0b013e3182840bbe)
Ingelsson M, Fukumoto H, Newell K, Growdon J, Hedley-Whyte E, Frosch M, et al. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology. 2004;62:925–31. (PMID: 1503769410.1212/01.WNL.0000115115.98960.37)
Vanderlinden G, Ceccarini J, Vande Casteele T, Michiels L, Lemmens R, Triau E, et al. Spatial decrease of synaptic density in amnestic mild cognitive impairment follows the tau build-up pattern. Mol Psychiatry. 2022;27:4244–51. (PMID: 3579418510.1038/s41380-022-01672-x)
Spires-Jones T, Hyman B. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 2014;82:756–71. (PMID: 24853936413518210.1016/j.neuron.2014.05.004)
Pooler A, Noble W, Hanger D. A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology. 2014;76:1–8.
Das S, Goossens J, Jacobs D, Dewit N, Pijnenburg Y, In ‘t Veld S, et al. Synaptic biomarkers in the cerebrospinal fluid associate differentially with classical neuronal biomarkers in patients with Alzheimer’s disease and frontotemporal dementia. Alzheimer’s Res Ther. 2023;15:62. (PMID: 10.1186/s13195-023-01212-x)
Mielke M, Przybelski S, Lesnick T, Kern S, Zetterberg H, Blennow K, et al. Comparison of CSF neurofilament light chain, neurogranin, and tau to MRI markers. Alzheimer’s Dement. 2021;17:801–12. (PMID: 10.1002/alz.12239)
Portelius E, Zetterberg H, Skillbäck T, Törnqvist U, Andreasson U, Trojanowski J, et al. Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease. Brain. 2015;138:3373–85. (PMID: 26373605464364210.1093/brain/awv267)
Galasko D, Xiao M, Xu D, Smirnov D, Salmon D, Dewit N, et al. Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease. Alzheimer’s Dement. 2019;5:871–82. (PMID: 10.1016/j.trci.2019.11.002)
Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085–92. (PMID: 27322420496158510.1038/nn.4328)
Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, et al. Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol. 2008;172:1683–92. (PMID: 18467692240842710.2353/ajpath.2008.070829)
Robbins M, Clayton E, Kaminski Schierle G. Synaptic tau: a pathological or physiological phenomenon? Acta Neuropathol Commun. 2021;9:149. (PMID: 34503576842804910.1186/s40478-021-01246-y)
Crimins J, Pooler A, Polydoro M, Luebke J, Spires-Jones T. The intersection of amyloid β and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer’s disease. Ageing Res Rev. 2013;12:757–63. (PMID: 23528367373586610.1016/j.arr.2013.03.002)
المشرفين على المادة: 0 (tau Proteins)
0 (Amyloid beta-Peptides)
0 (MAPT protein, human)
تواريخ الأحداث: Date Created: 20240408 Date Completed: 20240924 Latest Revision: 20240924
رمز التحديث: 20240925
DOI: 10.1038/s41380-024-02501-z
PMID: 38589563
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5578
DOI:10.1038/s41380-024-02501-z