دورية أكاديمية

Finite element modeling with patient-specific geometry to assess clinical risks of percutaneous pulmonary valve implantation.

التفاصيل البيبلوغرافية
العنوان: Finite element modeling with patient-specific geometry to assess clinical risks of percutaneous pulmonary valve implantation.
المؤلفون: Donahue CL; Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA., Westman CL; Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA., Faanes BL; Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, USA., Qureshi AM; Department of Pediatrics, The Lillei Frank Abercombie Section of Pediatric Cardiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA., Barocas VH; Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA., Aggarwal V; Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, USA.
المصدر: Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions [Catheter Cardiovasc Interv] 2024 May; Vol. 103 (6), pp. 924-933. Date of Electronic Publication: 2024 Apr 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 100884139 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-726X (Electronic) Linking ISSN: 15221946 NLM ISO Abbreviation: Catheter Cardiovasc Interv Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley-Liss, c1999-
مواضيع طبية MeSH: Pulmonary Valve*/physiopathology , Pulmonary Valve*/surgery , Pulmonary Valve*/diagnostic imaging , Heart Valve Prosthesis Implantation*/instrumentation , Heart Valve Prosthesis Implantation*/adverse effects , Finite Element Analysis* , Patient-Specific Modeling* , Heart Valve Prosthesis* , Models, Cardiovascular* , Prosthesis Design* , Cardiac Catheterization*/adverse effects , Cardiac Catheterization*/instrumentation, Humans ; Risk Assessment ; Adolescent ; Treatment Outcome ; Risk Factors ; Male ; Child ; Retrospective Studies ; Female ; Young Adult ; Predictive Value of Tests ; Hemodynamics ; Stents ; Pulmonary Valve Insufficiency/physiopathology ; Pulmonary Valve Insufficiency/surgery ; Pulmonary Valve Insufficiency/diagnostic imaging ; Pulmonary Valve Insufficiency/etiology ; Ventricular Outflow Obstruction/physiopathology ; Ventricular Outflow Obstruction/etiology ; Ventricular Outflow Obstruction/diagnostic imaging ; Clinical Decision-Making ; Adult
مستخلص: Background: Percutaneous pulmonary valve implantation (PPVI) is a non-surgical treatment for right ventricular outflow tract (RVOT) dysfunction. During PPVI, a stented valve, delivered via catheter, replaces the dysfunctional pulmonary valve. Stent oversizing allows valve anchoring within the RVOT, but overexpansion can intrude on the surrounding structures. Potentially dangerous outcomes include aortic valve insufficiency (AVI) from aortic root (AR) distortion and myocardial ischemia from coronary artery (CA) compression. Currently, risks are evaluated via balloon angioplasty/sizing before stent deployment. Patient-specific finite element (FE) analysis frameworks can improve pre-procedural risk assessment, but current methods require hundreds of hours of high-performance computation.
Methods: We created a simplified method to simulate the procedure using patient-specific FE models for accurate, efficient pre-procedural PPVI (using balloon expandable valves) risk assessment. The methodology was tested by retrospectively evaluating the clinical outcome of 12 PPVI candidates.
Results: Of 12 patients (median age 14.5 years) with dysfunctional RVOT, 7 had native RVOT and 5 had RV-PA conduits. Seven patients had undergone successful RVOT stent/valve placement, three had significant AVI on balloon testing, one had left CA compression, and one had both AVI and left CA compression. A model-calculated change of more than 20% in lumen diameter of the AR or coronary arteries correctly predicted aortic valve sufficiency and/or CA compression in all the patients.
Conclusion: Agreement between FE results and clinical outcomes is excellent. Additionally, these models run in 2-6 min on a desktop computer, demonstrating potential use of FE analysis for pre-procedural risk assessment of PPVI in a clinically relevant timeframe.
(© 2024 The Authors. Catheterization and Cardiovascular Interventions published by Wiley Periodicals LLC.)
References: Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890‐1900. Available at: doi:10.1016/S0735-1097(02)01886-7.
Krasuski RA, Bashore TM. Congenital heart disease epidemiology in the United States: blindly feeling for the charging elephant. Circulation. 2016;134:110‐113.
Driesen BW, Warmerdam EG, Sieswerda G‐J, et al. Percutaneous pulmonary valve implantation: current status and future perspectives. Curr Cardiol Rev. 2019;15:262‐273.
Karl TR. Tetralogy of Fallot: Current surgical perspective. 2008.
Shinebourne EA. Tetralogy of fallot: from fetus to adult. Heart. 2006;92:1353‐1359.
Davlouros PA, Karatza AA, Gatzoulis MA, Shore DF. Timing and type of surgery for severe pulmonary regurgitation after repair of Tetralogy of Fallot. Int J Cardiol. 2004;97:91‐101.
Torres AJ, McElhinney DB, Anderson BR, et al. Aortic root distortion and aortic insufficiency during balloon angioplasty of the right ventricular outflow tract prior to transcatheter pulmonary valve replacement. J Interv Cardiol. 2016;29:197‐207.
Morray BH, McElhinney DB, Cheatham JP, et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation a multicenter experience. Circ Cardiovasc Interv. 2013;6:535‐542.
Fraisse A, Assaidi A, Mauri L, et al. Coronary artery compression during intention to treat right ventricle outflow with percutaneous pulmonary valve implantation: incidence, diagnosis, and outcome. Catheter Cardiovasc Interv. 2014;83:83.
Eicken A, Ewert P, Hager A, et al. Percutaneous pulmonary valve implantation: two‐centre experience with more than 100 patients. Eur Heart J. 2011;32:1260‐1265.
Morgan GJ, Rodriguez SA, Leahy R, Zablah JE. Coronary compression testing by balloon interrogation during pulmonary valve implantation: room for doubt? Cardiol Young. 2021;31:1419‐1425.
Tezza M, Witsenburg M, Nieman K, van de Woestijne PC, Budde RPJ. Cardiac CT to assess the risk of coronary compression in patients evaluated for percutaneous pulmonary valve implantation. Eur J Radiol. 2019;110:88‐96. Available at: doi:10.1016/j.ejrad.2018.11.018.
Chung R, Taylor AM. Imaging for preintervention planning transcatheter pulmonary valve therapy. Circ Cardiovasc Imaging. 2014;7:182‐189.
Malone L, Fonseca B, Fagan T, et al. Preprocedural risk assessment prior to PPVI with CMR and cardiac CT. Pediatr Cardiol. 2017;38:746‐753.
Schievano S, Migliavacca F, Coats L, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology. 2007;242:490‐497.
Caimi A, Sturla F, Pluchinotta FR, et al. Prediction of stenting related adverse events through patient‐specific finite element modelling. J Biomech. 2018;79:135‐146.
Capelli C, Sauvage E, Giusti G, et al. Patient‐specific simulations for planning treatment in congenital heart disease. Interface Focus. 2018;8:20170021.
Giugno L, Faccini A, Carminati M. Percutaneous pulmonary valve implantation. Korean Circ J. 2020;50:302‐316.
CIBC. Seg3D: Volumetric Image Segmentation and Visualization. Scientific Computing and Imaging Institute (SCI), Download from: http://www.seg3d.org. 2016.
Seebacher G, Grasl C, Stoiber M, et al. Biomechanical properties of decellularized porcine pulmonary valve conduits. Artif Organs. 2008;32:28‐35.
Carr‐White GS, Afoke A, Birks EJ, et al. Aortic root characteristics of human pulmonary autografts. Circulation. 2000;102:1‐20.
Fayad ZA, Fallon JT, Jayasundera T, et al, VFJTFTJSGWGHJGAJJB and SKS. Noninvasive in vivo human coronary artery lumen and wall imaging using Black‐Blood. Circulation. 2000;102:506‐510.
Cabrera MS, Oomens CWJ, Bouten CVC, Bogers AJJC, Hoerstrup SP, Baaijens FPT. Mechanical analysis of ovine and pediatric pulmonary artery for heart valve stent design. J Biomech. 2013;46:2075‐2081. Available at: doi:10.1016/j.jbiomech.2013.04.020.
Azadani AN, Chitsaz S, Matthews PB, et al. Biomechanical comparison of human pulmonary and aortic roots. Eur J Cardiothorac Surg. 2012;41:1111‐1116.
Comley K, Fleck NA. A micromechanical model for the Young's modulus of adipose tissue. Int J Solids Struct. 2010;47:2982‐2990. Available at: doi:10.1016/j.ijsolstr.2010.07.001.
Karimi A, Navidbakhsh M, Shojaei A. A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries. Tissue Cell. 2015;47:152‐158. Available at: doi:10.1016/j.tice.2015.01.004.
Gasser TC, Ogden RW, Holzapfel GA. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface. 2006;3:15‐35.
Ogden RW. Nearly isochoric elastic deformations: application to rubberlike solids. J Mech Phys Solids. 1978;26:37‐57.
Maas SA, Ellis BJ, Ateshian GA, Weiss JA. FEBio: finite elements for biomechanics. J Biomech Eng. 2012;134(1):011005.
Schievano S, Taylor AM, Capelli C, et al. Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J Biomech. 2010;43:687‐693. Available at: doi:10.1016/j.jbiomech.2009.10.024.
Bosi GM, Capelli C, Khambadkone S, Taylor AM, Schievano S. Patient‐specific finite element models to support clinical decisions: a lesson learnt from a case study of percutaneous pulmonary valve implantation. Catheter Cardiovasc Interv. 2015;86:1120‐1130.
Cabrera MS, Oomens CWJ, Baaijens FPT. Understanding the requirements of self‐expandable stents for heart valve replacement: radial force, hoop force and equilibrium. J Mech Behav Biomed Mater. 2017;68:252‐264. Available at: doi:10.1016/j.jmbbm.2017.02.006.
Lenchik L, Heacock L, Weaver AA, et al. Automated segmentation of tissues using CT and MRI: a systematic review. Academic Radiol. 2019;26:1695‐1706.
Sedghi Gamechi Z, Arias‐Lorza AM, Saghir Z, Bos D, de Bruijne M. Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts. Med Phys. 2021;48:7837‐7849.
Tahoces PG, Varela R, Carreira JM. Deep learning method for aortic root detection. Comput Biol Med. 2021;135:104533.
Gao Z, Liu X, Qi S, Wu W, Hau WK, Zhang H. Automatic segmentation of coronary tree in CT angiography images. Int J Adapt Control Signal Process. 2019;33:1239‐1247.
معلومات مُعتمدة: NIH grant U01-HL139471; T32-HL139431; Andrew David Sit Foundation Innovators Fund award
فهرسة مساهمة: Keywords: balloon testing; pulmonary valve; transcatheter; valve replacement
تواريخ الأحداث: Date Created: 20240410 Date Completed: 20240426 Latest Revision: 20240426
رمز التحديث: 20240426
DOI: 10.1002/ccd.31016
PMID: 38597297
قاعدة البيانات: MEDLINE
الوصف
تدمد:1522-726X
DOI:10.1002/ccd.31016