دورية أكاديمية

Biosensing with Oleosin-Stabilized Liquid Crystal Droplets.

التفاصيل البيبلوغرافية
العنوان: Biosensing with Oleosin-Stabilized Liquid Crystal Droplets.
المؤلفون: Honaker LW; Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands., Eijffius A; Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands., Plankensteiner L; Laboratory of Biobased Chemistry and Technology, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands.; Laboratory of Food Chemistry, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands., Nikiforidis CV; Laboratory of Biobased Chemistry and Technology, Wageningen University & Research, 6708 WG, Wageningen, The Netherlands., Deshpande S; Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands.
المصدر: Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Aug; Vol. 20 (31), pp. e2309053. Date of Electronic Publication: 2024 Apr 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101235338 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1613-6829 (Electronic) Linking ISSN: 16136810 NLM ISO Abbreviation: Small Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH, c2005-
مواضيع طبية MeSH: Liquid Crystals*/chemistry , Biosensing Techniques*/methods, Plant Proteins/chemistry ; Surface-Active Agents/chemistry
مستخلص: Liquid crystals (LCs) are emerging as novel platforms for chemical, physical, and biological sensing. They can be used to detect biological amphiphiles such as lipids, fatty acids, digestive surfactants, and bacterial endotoxins. However, designing LC-based sensors in a manner that preserves their sensitivity and responsiveness to these stimuli, and possibly improves biocompatibility, remains challenging. In this work, the stabilization of LC droplets by oleosins, plant-sourced and highly surface active proteins due to their extended amphipathic helix, is investigated. Purified oleosins, at sub-micromolar concentrations, are shown to readily stabilize nematic LC droplets without switching their alignment, allowing them to detect surfactants at micromolar concentrations. Direct evidence of localization of oleosins at the LC-water interface is provided with fluorescent labeling, and the stabilized droplets remain stable over months. Interestingly, chiral LC droplets readily switch in the presence of nanomolar oleosin concentrations, an unexpected behavior that is explained by accounting for the energy barriers required for switching the alignment between the two cases. This leads thus to a twofold conclusion: oleosin-stabilized nematic LC droplets present a biocompatible alternative for bioanalyte detection, while chiral LCs can be further investigated for use as highly sensitive sensors for detecting amphipathic helices in biological systems.
(© 2024 Wageningen University. Small published by Wiley‐VCH GmbH.)
References: M. Schadt, Annu. Rev. Mater. Sci. 1997, 27, 305.
N. Popov, L. W. Honaker, M. Popova, N. Usol'tseva, E. K. Mann, A. Jákli, P. Popov, Materials 2018, 11, 14.
R. J. Carlton, J. T. Hunter, D. S. Miller, R. Abbasi, P. C. Mushenheim, L. N. Tan, N. L. Abbott, Liq. Cryst. Rev. 2013, 1, 29.
L. Pschyklenk, T. Wagner, A. Lorenz, P. Kaul, ACS Appl. Polym. Mater. 2020, 2, 1925.
K. Schelski, C. G. Reyes, L. Pschyklenk, P.‐M. Kaul, J. P. F. Lagerwall, Cell Rep. Phys. Sci. 2021, 100661.
M. Urbanski, C. G. Reyes, J. Noh, A. Sharma, Y. Geng, V. S. R. Jampani, J. P. F. Lagerwall, J. Phys. Condens. Matter 2017, 29, 1.
E. Ramou, S. I. C. J. Palma, A. C. A. Roque, ACS Appl. Mater. Interfaces 2022, 14, 6261.
Y. Geng, R. Kizhakidathazhath, J. P. F. Lagerwall, Nat. Mater. 2022, 1441.
A. Poryvai, M. Šmahel, M. Švecová, A. Nemati, S. Shadpour, P. Ulbrich, T. Ogolla, J. Liu, V. Novotná, M. Veverka, J. Vejpravová, T. Hegmann, M. Kohout, ACS Nano 2022, 16, 11833.
P. T. Ireland, T. V. Jones, J. Phys. E: Sci. Instrum. 1987, 20, 1195.
S. Bono, S. Konishi, Sci. Rep. 2022, 12, 13733.
H. Seto, M. Ueda, H. Segawa, US Patent 3704625, 1972.
L. W. Honaker, S. Vats, M. Anyfantakis, J. P. F. Lagerwall, J. Mater. Chem. C 2019, 7, 11588.
M. W. Williams, J. A. Wimberly, R. M. Stwodah, J. Nguyen, P. A. D'Angelo, C. Tang, ACS Appl. Polym. Mater. 2023, 3065.
C. G. Reyes, A. Sharma, J. P. F. Lagerwall, Liq. Cryst. 2016, 43, 1986.
D. K. Kim, M. Hwang, J. P. F. Lagerwall, J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 855.
Y. Kye, C. Kim, J. P. F. Lagerwall, J. Mater. Chem. C 2015, 3, 8979.
N. Popov, A. Smirnova, N. Usol'tseva, P. Popov, Zhidk. Krist. Ikh Prakt. Ispol'z. 2017, 17, 34.
W. G. Iglesias, N. L. Abbott, E. K. Mann, A. Jákli, ACS Appl. Mater. Interfaces 2012, 4, 6884.
C. Esteves, E. Ramou, A. R. P. Porteira, A. J. M. Barbosa, A. C. A. Roque, Adv. Opt. Mater. 2020, 8, 1902117.
T. Guo, X. Zheng, P. Pálffy‐Muhoray, Mol. Cryst. Liq. Cryst. 2021, 713, 65.
Y. Geng, J. Noh, I. Drevenšek‐Olenik, R. Rupp, J. P. F. Lagerwall, Liq. Cryst. 2017, 44, 1948.
D. A. Paterson, X. Du, P. Bao, A. A. Parry, S. A. Peyman, J. A. T. Sandoe, S. D. Evans, D. Luo, R. J. Bushby, J. C. Jones, H. F. Gleeson, Mol. Syst. Des. Eng. 2022, 7, 607.
S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, U. Steiner, Proc. Natl. Acad. Sci. 2012, 109, 15712.
R. Kizhakidathazhath, Y. Geng, V. S. R. Jampani, C. Charni, A. Sharma, J. P. F. Lagerwall, Adv. Funct. Mater. 2020, 30, 1909537.
H.‐G. Lee, S. Munir, S.‐Y. Park, ACS Appl. Mater. Interfaces 2016, 8, 26407.
L. W. Honaker, C. Chen, F. M. H. Dautzenberg, S. Brugman, S. Deshpande, ACS Appl. Mater. Interfaces 2022, 14, 37316.
L. W. Honaker, J. Schaap, D. Kenbeek, E. Miltenburg, S. Deshpande, J. Mater. Chem. C 2023, 4875.
J. M. Brake, M. K. Daschner, Y.‐Y. Luk, N. L. Abbott, Science 2003, 302, 2094.
P. Popov, L. W. Honaker, E. E. Kooijman, E. K. Mann, A. I. Jákli, Sensing Bio‐Sensing Res. 2016, 8, 31.
L. N. Tan, R. Carlton, K. Cleaver, N. L. Abbott, Mol. Cryst. Liq. Cryst. 2014, 594, 42.
P. Popov, E. K. Mann, A. Jákli, J. Mater. Chem. B 2017, 5, 5061.
J. Wang, J. Kolacz, Y. Chen, A. Jákli, J. Kawalec, M. Benitez, J. L. West, SID 2017 Digest 2017, 147–149.
D. M. Agra‐Kooijman, C. Robb, Y. Guan, A. Jákli, J. L. West, Liq. Cryst. 2021, 00, 1.
K. Harth, L. M. Shepherd, J. Honaker, R. Stannarius, Phys. Chem. Chem. Phys. 2015, 17, 26198.
M. O. Lavrentovich, L. Tran, Phys. Rev. Res. 2020, 2, 1.
A. Sharma, D. Gupta, G. Scalia, J. P. F. Lagerwall, Phys. Rev. Res. 2022, 4, 013130.
C. J. Moll, K. Meister, J. Kirschner, H. J. Bakker, J. Phys. Chem. B 2018, 122, 10722.
O. Squillace, R. Fong, O. Shepherd, J. Hind, J. Tellam, N. J. Steinke, R. L. Thompson, Polymers 2020, 12, 1.
J. Noh, K. Reguengo de Sousa, J. P. F. Lagerwall, Soft Matter 2015, 12, 367.
J. Noh, B. Henx, J. P. F. Lagerwall, Adv. Mater. 2016, 28, 10170.
L. W. Honaker, A. Sharma, A. Schanen, J. P. F. Lagerwall, Crystals 2021, 11, 687.
A. Sharma, R. Kizhakidathazhath, J. P. F. Lagerwall, Soft Matter 2023, 2637.
H. Agha, Y.‐S. Zhang, Y. Geng, J. P. F. Lagerwall, Adv. Photonics Res. 2023, 4, 2200363.
N. Alexandre, J. Ribeiro, A. Gärtner, T. Pereira, I. Amorim, J. Fragoso, A. Lopes, J. Fernandes, E. Costa, A. Santos‐Silva, M. Rodrigues, J. D. Santos, A. C. Maurício, A. L. Luís, J. Biomed. Mater. Res., Part A 2014, 102, 4262.
L. S. Peixoto, F. M. Silva, M. A. Niemeyer, G. Espinosa, P. A. Melo, M. Nele, J. C. Pinto, Macromol. Symp. 2006, 243, 190.
A. Dan, S. Aery, S. Zhang, D. L. Baker, H. F. Gleeson, A. Sarkar, Langmuir 2020, 36, 10091.
O. H. Piñeres‐Quiñones, D. M. Lynn, C. Acevedo‐Vélez, Langmuir 2022, 38, 957.
S. Aery, A. Parry, A. Araiza‐Calahorra, S. D. Evans, H. F. Gleeson, A. Dan, A. Sarkar, J. Mater. Chem. C 2023, 5831.
T. L. Shimada, I. Hara‐Nishimura, Biol. Pharm. Bull. 2010, 33, 360.
C. V. Nikiforidis, Adv. Colloid Interface Sci. 2019, 274, 102039.
L. Plankensteiner, J. Yang, J. H. Bitter, J.‐P. Vincken, M. Hennebelle, C. V. Nikiforidis, Food Hydrocolloids 2023, 137, 108419.
S. Maurer, G. Waschatko, D. Schach, B. I. Zielbauer, J. Dahl, T. Weidner, M. Bonn, T. A. Vilgis, J. Phys. Chem. B 2013, 117, 13872.
L. G. Alexander, R. B. Sessions, A. R. Clarke, A. S. Tatham, P. R. Shewry, J. A. Napier, Planta 2002, 214, 546.
D. J. Lacey, N. Wellner, F. Beaudoin, J. A. Napier, P. R. Shewry, Biochem. J. 1998, 334, 469.
J. A. Julien, S. G. Mutchek, N. J. Wittenberg, K. J. Glover, Proteins: Struct., Funct., Bioinf. 2022, 90, 560.
L. J. Lin, P. C. Liao, H. H. Yang, J. T. Tzen, Plant Physiol. Biochem. 2005, 43, 770.
V. S. R. Jampani, R. H. Volpe, K. Reguengo de Sousa, J. Ferreira Machado, C. M. Yakacki, J. P. F. Lagerwall, Sci. Adv. 2019, 5, 1.
A. J. Board, J. M. Crowther, A. Acevedo‐Fani, C.‐N. Meisrimler, G. B. Jameson, R. C. J. Dobson, Biophys. Rev. 2022, 14.
L. Tran, M. O. Lavrentovich, G. Durey, A. Darmon, M. F. Haase, N. Li, D. Lee, K. J. Stebe, R. D. Kamien, T. Lopez‐Leon, Phys. Rev. X 2017, 7, 041029.
J. Kops, Flora Batavia, vol. 4, J.C. Sepp en Zoon,   1822.
G. Posnjak, S. Čopar, I. Muševič, Nat. Commun. 2017, 1.
M. Kleman, O. D. Lavrentovich, Philos. Mag. 2006, 86, 4117.
Y. Geng, J. Noh, I. Drevenšek‐Olenik, R. Rupp, G. Lenzini, J. P. F. Lagerwall, Sci. Rep. 2016, 6, 26840.
P. Vukusic, J. R. Sambles, Nature 2003, 424, 852.
F. C. Frank, Discuss. Faraday Soc. 1958, 25, 19.
J. V. Selinger, Annu. Rev. Condens. Matter Phys. 2021, 13, 49.
M. Cui, J. R. Kelly, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1999, 331, 49.
A. V. Zakharov, R. Y. Dong, Phys. Rev. E 2003, 64, 031701.
B. Klus, U. A. Laudyn, M. A. Karpierz, B. Sahraoui, Opt. Express 2014, 22, 30257.
D. Seč, T. Porenta, M. Ravnik, S. Žumer, Soft Matter 2012, 8, 11982.
A. R. Fialho, N. R. Bernardino, N. M. Silvestre, M. M. T. da Gama, Phys. Rev. E 2017, 95, 012702.
C. V. Nikiforidis, C. Ampatzidis, S. Lalou, E. Scholten, T. D. Karapantsios, V. Kiosseoglou, Soft Matter 2013, 9, 1354.
W. Li, M. Zhang, J. Zhang, Y. Han, Front. Chem. China 2006, 1, 438.
C. Barnaba, M. A. García‐Alvarado, J. M. Tejero‐Andrade, I. G. Medina‐Meza, Rev. Mexicana Ingen. Qum. 2013, 12, 283.
H. P. Meissner, A. S. Michaels, Ind. Eng. Chem. 1949, 41, 2782.
A. Bąk, W. Podgórska, Colloids Surf., A 2016, 504, 414.
B. V. Zhmud, F. Tiberg, J. Kizling, Langmuir 2000, 16, 2557.
M. Volmer, Z. Phys. Chem 1925, 115U, 253.
L. Bedjaoui, T. Bouchaour, M. Benmouna, X. Coqueret, U. Maschke, Phys. Procedia 2009, 2, 1475.
معلومات مُعتمدة: OCENW.XS21.4.116 Nederlandse Organisatie voor Wetenschappelijk Onderzoek; OCENW.XS22.3.069 Nederlandse Organisatie voor Wetenschappelijk Onderzoek
فهرسة مساهمة: Keywords: amphipathic helix; biosensing; liquid crystal; oleosin; structural color
المشرفين على المادة: 0 (Plant Proteins)
0 (Surface-Active Agents)
تواريخ الأحداث: Date Created: 20240411 Date Completed: 20240801 Latest Revision: 20240801
رمز التحديث: 20240801
DOI: 10.1002/smll.202309053
PMID: 38602194
قاعدة البيانات: MEDLINE