دورية أكاديمية

A correlated ferromagnetic polar metal by design.

التفاصيل البيبلوغرافية
العنوان: A correlated ferromagnetic polar metal by design.
المؤلفون: Zhang J; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China., Shen S; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China., Puggioni D; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA., Wang M; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China., Sha H; State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.; MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China., Xu X; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China., Lyu Y; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China., Peng H; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China., Xing W; State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.; MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China., Walters LN; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA., Liu L; State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.; MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China., Wang Y; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China., Hou; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China., Xi C; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China., Pi L; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China., Ishizuka H; Department of Physics, Tokyo Institute of Technology, Tokyo, Japan., Kotani Y; Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Hyogo, Japan., Kimata M; Institute of Materials Research, Tohoku University, Sendai, Japan., Nojiri H; Institute of Materials Research, Tohoku University, Sendai, Japan., Nakamura T; International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Sendai, Japan., Liang T; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.; RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.; Frontier Science Center for Quantum Information, Beijing, China., Yi D; State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China., Nan T; School of Integrated Circuits, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China., Zang J; Department of Physics and Astronomy, University of New Hampshire, Durham, NH, USA., Sheng Z; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China., He Q; Department of Physics, Durham University, Durham, UK., Zhou S; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.; Frontier Science Center for Quantum Information, Beijing, China., Nagaosa N; RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.; Department of Applied Physics, University of Tokyo, Tokyo, Japan., Nan CW; State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China., Tokura Y; RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.; Department of Applied Physics, University of Tokyo, Tokyo, Japan., Yu R; State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China. ryu@tsinghua.edu.cn.; MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China. ryu@tsinghua.edu.cn., Rondinelli JM; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. jrondinelli@northwestern.edu., Yu P; State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China. yupu@tsinghua.edu.cn.; RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan. yupu@tsinghua.edu.cn.; Frontier Science Center for Quantum Information, Beijing, China. yupu@tsinghua.edu.cn.
المصدر: Nature materials [Nat Mater] 2024 Jul; Vol. 23 (7), pp. 912-919. Date of Electronic Publication: 2024 Apr 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101155473 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4660 (Electronic) Linking ISSN: 14761122 NLM ISO Abbreviation: Nat Mater Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London, UK : Nature Pub. Group, [2002]-
مستخلص: Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca 3 Co 3 O 8 . This material crystallizes with alternating stacking of oxygen tetrahedral CoO 4 monolayers and octahedral CoO 6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO 6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Anderson, P. W. & Blount, E. I. Symmetry considerations on martensitic transformations: ‘ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965).
Shi, Y. G. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013). (PMID: 24056805)
Kim, T. H. et al. Polar metals by geometric design. Nature 533, 68–72 (2016). (PMID: 27096369)
Puggioni, D. & Rondinelli, J. M. Designing a robustly metallic noncenstrosymmetric ruthenate oxide with large thermopower anisotropy. Nat. Commun. 5, 3432 (2014). (PMID: 24633396)
Kolodiazhnyi, T., Tachibana, M., Kawaji, H., Hwang, J. & Takayama-Muromachi, E. Persistence of ferroelectricity in BaTiO 3 through the insulator–metal transition. Phys. Rev. Lett. 104, 147602 (2010). (PMID: 20481963)
Fujioka, J. et al. Ferroelectric-like metallic state in electron doped BaTiO 3 . Sci. Rep. 5, 13207 (2015). (PMID: 262897494542543)
Filippetti, A., Fiorentini, V., Ricci, F., Delugas, P. & Iniguez, J. Prediction of a native ferroelectric metal. Nat. Commun. 7, 11211 (2016). (PMID: 270400764822038)
Benedek, N. A. & Birol, T. ‘Ferroelectric’ metals reexamined: fundamental mechanisms and design considerations for new materials. J. Mater. Chem. C 4, 4000–4015 (2016).
Lei, S. M. et al. Observation of quasi-two-dimensional polar domains and ferroelastic switching in a metal, Ca 3 Ru 2 O 7 . Nano Lett. 18, 3088–3095 (2018). (PMID: 29631404)
Markovic, I. et al. Electronically driven spin-reorientation transition of the correlated polar metal Ca 3 Ru 2 O 7 . Proc. Natl Acad. Sci. USA 117, 15524–15529 (2020). (PMID: 325766877355039)
Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012). (PMID: 22270825)
Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016). (PMID: 27571452)
Fei, Z. Y. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018). (PMID: 30038286)
Edelstein, V. M. Inverse Faraday effect in conducting crystals caused by a broken mirror symmetry. Phys. Rev. Lett. 80, 5766–5769 (1998).
Sakai, H. et al. Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe 2 . Sci. Adv. 2, e1601378 (2016). (PMID: 278478745106202)
Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019). (PMID: 30783227)
Rikken, G. & Wyder, P. Magnetoelectric anisotropy in diffusive transport. Phys. Rev. Lett. 94, 016601 (2005). (PMID: 15698109)
Yasuda, K. et al. Large unidirectional magnetoresistance in a magnetic topological insulator. Phys. Rev. Lett. 117, 127202 (2016). (PMID: 27689294)
Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).
Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018). (PMID: 302180546138722)
Yasuda, K. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. 15, 831–835 (2020). (PMID: 32661369)
Lee, J. H. et al. Nonreciprocal transport in a Rashba ferromagnet, delafossite PdCoO 2 . Nano Lett. 21, 8687–8692 (2021). (PMID: 34613718)
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857–2897 (2021). (PMID: 33164494)
Stornaiuolo, D. et al. Tunable spin polarization and superconductivity in engineered oxide interfaces. Nat. Mater. 15, 278–283 (2016). (PMID: 26641020)
Yoshimi, R. et al. Current-driven magnetization switching in ferromagnetic bulk Rashba semiconductor (Ge,Mn)Te. Sci. Adv. 4, eaat9989 (2018). (PMID: 305391446286171)
Zhang, H. et al. Room temperature skyrmion lattice in a layered magnet (Fe 0.5 Co 0.5 ) 5 GeTe 2 . Sci. Adv. 8, eabm7103 (2022). (PMID: 353199838942374)
Zhang, H. et al. A room temperature polar magnetic metal. Phys. Rev. Mater. 6, 044403 (2022).
Urru, A., Ricci, F., Filippetti, A., Iniguez, J. & Fiorentini, V. A three-order-parameter bistable magnetoelectric multiferroic metal. Nat. Commun. 11, 4922 (2020). (PMID: 330048147530708)
Duan, X., Huang, J. W., Xu, B. & Liu, S. A two-dimensional multiferroic metal with voltage-tunable magnetization and metallicity. Mater. Horiz. 8, 2316–2324 (2021). (PMID: 34846436)
Xu, S. Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). (PMID: 26184916)
Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015). (PMID: 26607545)
Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS 2 . Science 350, 1353–1357 (2015). (PMID: 26563134)
Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe 2 . Nat. Phys. 12, 1105–1110 (2016).
Parsons, T. G., D’Hondt, H., Hadermann, J. & Hayward, M. A. Synthesis and structural characterization of La 1-x A x MnO 2.5 (A = Ba, Sr, Ca) phases: mapping the variants of the brownmillerite structure. Chem. Mater. 21, 5527–5538 (2009).
Young, J. et al. Polar oxides without inversion symmetry through vacancy and chemical order. J. Am. Chem. Soc. 139, 2833–2841 (2017). (PMID: 28161942)
Tian, H. et al. Novel type of ferroelectricity in brownmillerite structures: a first-principles study. Phys. Rev. Mater. 2, 084402 (2018).
Grenier, J.-C., Darriet, J., Pouchard, M. & Hagenmuller, P. Mise en evidence d’une nouvelle famille de phases de type perovskite lacunaire ordonnee de formule A 3 M 3 O 8 (AMO 2.67 ). Mater. Res. Bull. 11, 1219–1225 (1976).
Hansteen, O. H., Fjellvåg, H. & Hauback, B. C. Crystal structure, thermal and magnetic properties of La 3 Co 3 O 8 . Phase relations for LaCoO 3–δ (0.00≤δ≤0.50) at 673 K. J. Mater. Chem. 8, 2081–2088 (1998).
Zhang, J. et al. Brownmillerite Ca 2 Co 2 O 5 : Synthesis, stability, and re-entrant single crystal to single crystal structural transitions. Chem. Mater. 26, 7172–7182 (2014).
Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).
Gunnarsson, O., Calandra, M. & Han, J. E. Colloquium: saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085–1099 (2003).
Lei, S. et al. Comprehensive magnetic phase diagrams of the polar metal Ca 3 (Ru 0.95 Fe 0.05 ) 2 O 7 . Phys. Rev. B 99, 224411 (2019).
Hudspeth, J. M., Goossens, D. J., Studer, A. J., Withers, R. L. & Norén, L. The crystal and magnetic structures of LaCa 2 Fe 3 O 8 and NdCa 2 Fe 3 O 8 . J. Phys. Condens. Matter 21, 124206 (2009).
Bersuker, I. B. Pseudo-Jahn–Teller effect-a two-state paradigm in formation, deformation, and transformation of molecular systems and solids. Chem. Rev. 113, 1351–1390 (2013). (PMID: 23301718)
Hickox-Young, D., Puggioni, D. & Rondinelli, J. M. Persistent polar distortions from covalent interactions in doped BaTiO 3 . Phys. Rev. B 102, 014108 (2020).
Zabalo, A. & Stengel, M. Switching a polar metal via strain gradients. Phys. Rev. Lett. 126, 127601 (2021).
Nova, T. F. et al. Metastable ferroelectricity in optically strained SrTiO 3 . Science 364, 1075–1079 (2019).
Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO 3 . Science 364, 1079–1082 (2019).
Banerjee, S., Rowland, J., Erten, O. & Randeria, M. Enhanced stability of skyrmions in two-dimensional chiral magnets with Rashba spin–orbit coupling. Phys. Rev. X 4, 031045 (2014).
Ishizuka, K. A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71–83 (2002).
Rodenburg, J. & Maiden, A. in Springer Handbook of Microscopy (eds Hawkes, P. W. & Spence, J. C. H.) 819–904 (Springer, 2019).
Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021). (PMID: 34016774)
Sha, H., Cui, J. & Yu, R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction. Sci. Adv. 8, eabn2275 (2022). (PMID: 355596759106290)
Nakamura, T. et al. Soft X-ray magnetic circular dichroism of a CoFe/MnIr exchange bias film under pulsed high magnetic field. Appl. Phys. Express 4, 066602 (2011).
Narumi, Y. et al. X-ray spectroscopies in pulsed high magnetic fields: new frontier with flying magnets and rolling capacitor banks. Synch. Rad. N. 25, 12–17 (2012).
Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum-rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995). (PMID: 10059138)
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). (PMID: 10062328)
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).
Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994).
Orobengoa, D., Capillas, C., Aroyo, M. I. & Perez-Mato, J. M. AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server. J. Appl. Cryst. 42, 820–833 (2009).
Perez-Mato, J. M., Orobengoa, D. & Aroyo, M. I. Mode crystallography of distorted structures. Acta Crystallogr. Sect. A 66, 558–590 (2010).
Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. ISODISPLACE: an internet tool for exploring structural distortions. J. Appl. Cryst. 39, 607–614 (2006).
Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl 2 -type SiO 2 at high pressures. Phys. Rev. B 78, 134106 (2008).
معلومات مُعتمدة: 2021YFE0107900 National Natural Science Foundation of China (National Science Foundation of China); 2023YFA1406400 National Natural Science Foundation of China (National Science Foundation of China); 2021YFA1400300 National Natural Science Foundation of China (National Science Foundation of China); 52388201 National Natural Science Foundation of China (National Science Foundation of China); Z200007 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation); W911NF-15-1-0017 United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO); DMR-2104397 National Science Foundation (NSF)
تواريخ الأحداث: Date Created: 20240411 Latest Revision: 20240708
رمز التحديث: 20240709
DOI: 10.1038/s41563-024-01856-6
PMID: 38605196
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4660
DOI:10.1038/s41563-024-01856-6