دورية أكاديمية

3D and 4D assembly of functional structures using shape-morphing materials for biological applications.

التفاصيل البيبلوغرافية
العنوان: 3D and 4D assembly of functional structures using shape-morphing materials for biological applications.
المؤلفون: Mirzababaei S; Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States., Towery LAK; Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States., Kozminsky M; Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.; Nanovaccine Institute, Iowa State University, Ames, IA, United States.
المصدر: Frontiers in bioengineering and biotechnology [Front Bioeng Biotechnol] 2024 Mar 28; Vol. 12, pp. 1347666. Date of Electronic Publication: 2024 Mar 28 (Print Publication: 2024).
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Frontiers Media S.A Country of Publication: Switzerland NLM ID: 101632513 Publication Model: eCollection Cited Medium: Print ISSN: 2296-4185 (Print) Linking ISSN: 22964185 NLM ISO Abbreviation: Front Bioeng Biotechnol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Media S.A., [2013]-
مستخلص: 3D structures are crucial to biological function in the human body, driving interest in their in vitro fabrication. Advances in shape-morphing materials allow the assembly of 3D functional materials with the ability to modulate the architecture, flexibility, functionality, and other properties of the final product that suit the desired application. The principles of these techniques correspond to the principles of origami and kirigami, which enable the transformation of planar materials into 3D structures by folding, cutting, and twisting the 2D structure. In these approaches, materials responding to a certain stimulus will be used to manufacture a preliminary structure. Upon applying the stimuli, the architecture changes, which could be considered the fourth dimension in the manufacturing process. Here, we briefly summarize manufacturing techniques, such as lithography and 3D printing, that can be used in fabricating complex structures based on the aforementioned principles. We then discuss the common architectures that have been developed using these methods, which include but are not limited to gripping, rolling, and folding structures. Then, we describe the biomedical applications of these structures, such as sensors, scaffolds, and minimally invasive medical devices. Finally, we discuss challenges and future directions in using shape-morphing materials to develop biomimetic and bioinspired designs.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2024 Mirzababaei, Towery and Kozminsky.)
References: Essays Biochem. 2021 Aug 10;65(3):409-416. (PMID: 34223612)
Adv Mater. 2022 May;34(18):e2109550. (PMID: 35073433)
Adv Healthc Mater. 2019 Dec;8(23):e1900939. (PMID: 31697038)
ACS Appl Mater Interfaces. 2016 Apr 27;8(16):10070-87. (PMID: 27018814)
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):703-8. (PMID: 19139411)
Bioinspir Biomim. 2023 May 10;18(4):. (PMID: 37059112)
Mil Med Res. 2022 Dec 16;9(1):70. (PMID: 36522661)
Adv Mater. 2022 Jan;34(2):e2103691. (PMID: 34672027)
Tissue Eng Part C Methods. 2013 Jun;19(6):417-26. (PMID: 23102234)
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):151-159. (PMID: 30525417)
Indian J Pediatr. 2008 Sep;75(9):925-9. (PMID: 19011805)
Semin Vasc Surg. 2021 Dec;34(4):247-259. (PMID: 34911631)
Small. 2021 Mar;17(12):e2005527. (PMID: 33599055)
Recent Pat Drug Deliv Formul. 2012 Aug;6(2):149-55. (PMID: 22436025)
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):16097-16108. (PMID: 36924131)
Nano Lett. 2020 Jul 8;20(7):5383-5390. (PMID: 32463679)
N Engl J Med. 2022 Jul 7;387(1):77-78. (PMID: 35731906)
J Tissue Eng. 2018 Oct 08;9:2041731418802090. (PMID: 30305886)
Nano Lett. 2014 Jul 9;14(7):4164-70. (PMID: 24937214)
J Calif Dent Assoc. 2004 Dec;32(12):1022-30. (PMID: 15715379)
Biofabrication. 2020 Feb 19;12(2):022003. (PMID: 31972558)
Adv Mater. 2017 Dec;29(46):. (PMID: 29024044)
Tissue Eng Part C Methods. 2016 Apr;22(4):398-407. (PMID: 26831041)
ACS Appl Mater Interfaces. 2021 Mar 24;13(11):12746-12758. (PMID: 33405502)
Int J Biol Macromol. 2024 Jan;254(Pt 3):127882. (PMID: 37951446)
Biomed Mater Devices. 2022 Oct 3;:1-13. (PMID: 38625211)
Adv Healthc Mater. 2018 Feb;7(3):. (PMID: 29218800)
Biotechnol Bioeng. 2019 May;116(5):1201-1219. (PMID: 30636289)
Mater Today Bio. 2022 Jul 14;16:100363. (PMID: 35898440)
Sci Rep. 2017 Dec 22;7(1):17376. (PMID: 29273722)
Colloids Surf B Biointerfaces. 2019 Apr 1;176:87-95. (PMID: 30594707)
Small. 2021 Feb;17(5):e2002549. (PMID: 33448115)
ACS Nano. 2014 Nov 25;8(11):11108-17. (PMID: 25329686)
Adv Mater. 2015 Nov 18;27(43):6797-805. (PMID: 26397039)
Biofabrication. 2022 Dec 02;15(1):. (PMID: 36279872)
Light Sci Appl. 2020 Apr 30;9:75. (PMID: 32377337)
J Biomed Mater Res B Appl Biomater. 2015 Oct;103(7):1333-43. (PMID: 25385518)
Nat Protoc. 2010 Mar;5(3):491-502. (PMID: 20203666)
Int J Colorectal Dis. 2017 Jan;32(1):107-111. (PMID: 27695974)
Biomicrofluidics. 2010 Jun 15;4(2):. (PMID: 20697574)
Molecules. 2022 Aug 15;27(16):. (PMID: 36014435)
Biofabrication. 2013 Mar;5(1):015001. (PMID: 23172542)
Nanoscale. 2019 Jul 28;11(28):13249-13259. (PMID: 31149690)
Macromol Biosci. 2023 Oct;23(10):e2300016. (PMID: 37243584)
Mater Sci Eng C Mater Biol Appl. 2019 Apr;97:864-883. (PMID: 30678978)
Biomed Mater. 2007 Mar;2(1):S23-7. (PMID: 18458416)
Int J Mol Sci. 2023 Jan 03;24(1):. (PMID: 36614258)
Adv Mater. 2012 Feb 14;24(7):890-6. (PMID: 22403828)
Nano Lett. 2015 Aug 12;15(8):5530-8. (PMID: 26161791)
Lab Chip. 2012 Nov 7;12(21):4269-78. (PMID: 22895550)
Macromol Biosci. 2020 Aug;20(8):e2000108. (PMID: 32567193)
Sci Rep. 2016 Jun 09;6:27693. (PMID: 27277575)
Biomaterials. 2000 Sep;21(18):1837-45. (PMID: 10919687)
Biomaterials. 2017 Sep;140:150-161. (PMID: 28649015)
Biomacromolecules. 2011 Jun 13;12(6):2211-5. (PMID: 21524116)
Adv Healthc Mater. 2020 Jul;9(13):e2000349. (PMID: 32484311)
Tissue Eng Part A. 2012 Jun;18(11-12):1304-12. (PMID: 22394017)
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2860-2868. (PMID: 31098392)
Adv Mater. 2023 Jul;35(29):e2208820. (PMID: 36810905)
ACS Nano. 2016 Jun 28;10(6):5835-46. (PMID: 27267364)
Adv Mater. 2013 Jan 25;25(4):514-9. (PMID: 23047708)
Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:1427-1434. (PMID: 28415434)
Adv Healthc Mater. 2017 Nov;6(22):. (PMID: 29076283)
ACS Appl Mater Interfaces. 2015 Feb 11;7(5):3398-405. (PMID: 25594664)
Nano Lett. 2014 Aug 13;14(8):4197-204. (PMID: 24598026)
Artif Organs. 2021 May;45(5):454-463. (PMID: 33107042)
Biomaterials. 1999 Jun;20(11):1057-62. (PMID: 10378806)
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15426-31. (PMID: 26621717)
Int J Bioprint. 2023 May 30;9(5):764. (PMID: 37457930)
J Transl Med. 2016 Sep 20;14:271. (PMID: 27645770)
فهرسة مساهمة: Keywords: biosensors; kirigami; minimally invasive surgery; origami; shape-morphing materials; smart materials; tissue engineering
تواريخ الأحداث: Date Created: 20240412 Latest Revision: 20240425
رمز التحديث: 20240425
مُعرف محوري في PubMed: PMC11008679
DOI: 10.3389/fbioe.2024.1347666
PMID: 38605991
قاعدة البيانات: MEDLINE
الوصف
تدمد:2296-4185
DOI:10.3389/fbioe.2024.1347666